13,577 research outputs found

    Production of Z' and W' via Drell-Yan processes in the 4D Composite Higgs Model at the LHC

    Get PDF
    We present an analysis of both the Neutral Current (NC) and Charged Current (CC) Drell-Yan processes at the LHC within a 4 Dimensional realization of a Composite Higgs model studying the cross sections and taking into account the possible impact of the extra fermions present in the spectrum.Comment: Conference proceeding, XII IFAE Edition, 3-5 April 2013, Cagliari. 2 pages, 2 figures; v2 typo correcte

    Higgs Boson in the 4DCHM: LHC phenomenology

    Full text link
    Composite Higgs models provide an elegant solution to the hierarchy problem present in the Standard Model (SM) and give an alternative pattern leading to the mechanism of Electro-Weak Symmetry Breaking (EWSB). We present an analysis of the Higgs boson production and decay within a recently proposed realistic realization of this general idea: the 4D Composite Higgs Model (4DCHM). Comparing our results with the latest Large Hadron Collider (LHC) data we show that the 4DCHM could provide an alternative explanation with respect to the SM of the LHC results pointing to the discovery of a Higgs-like particle at 125 GeV.Comment: Conference proceeding, EPS-HEP 2013, 18-24 July 2013, Stockholm. 3 pages, 2 figures, typo correcte

    XQCAT: eXtra Quark Combined Analysis Tool

    Get PDF
    XQCAT (eXtra Quark Combined Analysis Tool) is a tool aimed at determining exclusion confidence levels for scenarios of new physics characterised by the presence of one or multiple heavy extra quarks which interact through Yukawa couplings with any of the Standard Model quarks. The code uses a database of efficiencies for pre-simulated processes of QCD-induced pair production of extra quarks and their subsequent on-shell decays. In the version 1.2 of XQCAT the efficiencies have been computed for a set of seven publicly available search results by the CMS experiment. The input for the code is a text file in which masses, branching ratios and dominant chirality of the couplings of the new quarks are provided. The output of the code is the exclusion confidence levels of the test point for each implemented experimental analysis considered individually and, when possible, in statistical combination.Comment: 18 pages, 2 figures, version accepted for publication in Comp. Phys. Comm., fixed formatting problems caused by the arXiv's autotex syste

    The cranking formula and the spurious behaviour of the mass parameters

    Full text link
    We discuss some aspects of the approach of the mass parameters by means of the simple cranking model. In particular, it is well known that the numerical application of this formula is often subject to ambiguities or contradictions. It is found that these problems are induced by the presence of two derivatives in the formula. To overcome these problems, we state a useful ansatz and we develop a number of simple arguments which tend to justify the removal of these terms. As soon as this is done, the formula becomes simpler and easier to interpret. In this respect, it is shown how the shell effects affect the mass parameters. A number of numerical tests help us in our conclusions.Comment: version 3 corrigendum of the ansatz of section V, corrigendum of the legend of Fig3. Submission = text file + 5 figure

    Decoherence Dynamics in Low-Dimensional Cold Atom Interferometers

    Full text link
    We report on a study of the dynamics of decoherence of a matter-wave interferometer, consisting of a pair of low-dimensional cold atom condensates at finite temperature. We identify two distinct regimes in the time dependence of the coherence factor of the interferometer: quantum and classical. Explicit analytical results are obtained in both regimes. In particular, in the two-dimensional (2D) case in the classical (long time) regime, we find that the dynamics of decoherence is universal, exhibiting a power-law decay with an exponent, proportional to the ratio of the temperature to the Kosterlitz-Thouless temperature of a single 2D condensate. In the one-dimensional (1D) case in the classical regime we find a universal nonanalytic time dependence of decoherence, which is a consequence of the nonhydrodynamic nature of damping in 1D liquids.Comment: 4 pages, published versio

    Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    Full text link
    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated, that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated as well as the masses of hyperons and some baryonic resonances and expressed mainly through the values of quark condensates -- , q=u,d,s, ~q=u,d,s -- the vacuum expectation values (v.e.v.) of quark field. The concept of vacuum expectation values induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron and hyperons are calculated. The results of calculation of baryon octet β\beta-decay constants are also presented.Comment: 13 pades, 5 figures. Dedicated to 85-birthday of acad. S.T.Belyaev. To be published in Phys.At.Nucl. Few references are correcte

    Deconfinement in Matrix Models about the Gross--Witten Point

    Full text link
    We study the deconfining phase transition in SU(N) gauge theories at nonzero temperature using a matrix model of Polyakov loops. The most general effective action, including all terms up to two spatial derivatives, is presented. At large N, the action is dominated by the loop potential: following Aharony et al., we show how the Gross--Witten model represents an ultra-critical point in this potential. Although masses vanish at the Gross--Witten point, the transition is of first order, as the fundamental loop jumps only halfway to its perturbative value. Comparing numerical analysis of the N=3 matrix model to lattice simulations, for three colors the deconfining transition appears to be near the Gross--Witten point. To see if this persists for N >= 4, we suggest measuring within a window ~1/N^2 of the transition temperature.Comment: 22 pages, 7 figures; revtex4. A new Fig. 2 illustrates a strongly first order transition away from the GW point; discussion added to clarify relation to hep-th/0310285. Conclusions include a discussion of recent lattice data for N>3, hep-lat/0411039 and hep-lat/050200

    Higgs Boson Production in Weak Boson Fusion at Next-to-Leading Order

    Full text link
    The weak boson fusion process for neutral Higgs boson production is investigated with particular attention to the accuracy with which the Higgs boson coupling to weak bosons can be determined at CERN Large Hadron Collider (LHC) energies in final states that contain a Higgs boson plus at least two jets. Using fully differential perturbative matrix elements for the weak boson fusion signal process and for the QCD background processes, we generate events in which a Higgs boson is produced along with two jets that carry large transverse momentum. The effectiveness of different prescriptions to enhance the signal to background ratio is studied, and the expected signal purities are calculated in each case. We find that a simple cut on the rapidity of one final-state jet works well. We determine that an accuracy of delta_g/g ~ 10% on the effective coupling g may be possible after ~ 200 fb^-1 of integrated luminosity is accumulated at the LHC.Comment: 34 pages. Some restructuring of the text, a few sentences and one figure added. Conclusions not altered. To be published in Physical Review

    Framework for Model Independent Analyses of Multiple Extra Quark Scenarios

    Get PDF
    In this paper we present an analysis strategy and a dedicated tool to determine the exclusion confidence level for any scenario involving multiple heavy extra quarks with generic decay channels, as predicted in several extensions of the Standard Model. We have created, validated and used a software package, called XQCAT (eXtra Quark Combined Analysis Tool), which is based on publicly available experimental data from direct searches for top partners and from Supersymmetry inspired searches. By means of this code, we recast the limits from CMS on new heavy extra quarks considering a complete set of decay channels. The resulting exclusion confidence levels are presented for some simple scenarios with multiple states and general coupling assumptions. Highlighting the importance of combining multiple topology searches to obtain accurate re-interpretations of the existing searches, we discuss the reach of the SUSY analyses so as to set bounds on new quark resonances. In particular, we report on the re-interpretation of the existing limits on benchmark scenarios with one and multiple pair-produced top partners having non-exclusive couplings to the third Standard Model generation of quarks.Comment: 31 pages, 6 figures, 3 tables, version accepted for publication in JHE
    • …
    corecore