847 research outputs found

    A Comment on "A note on polarized light from Magnetars: QED effects and axion-like particles" by L.M. Capparelli, L. Maiani and A.D. Polosa

    Full text link
    The recent detection of a large polarization degree in the optical emission of an isolated neutron star led to the suggestion that this has been the first evidence of vacuum polarization in a strong magnetic field, an effect predicted by quantum electrodynamics but never observed before. This claim was challanged in a paper by Capparelli, Maiani & Polosa (2017), according to whom a much higher polarization degree would be necessary to positively identify vacuum polarization. Here we show that their conclusions are biased by several inadequate assumptions and have no impact on the original claim.Comment: 10 pages, 2 figure

    Evidence of vacuum birefringence from the polarisation of the optical emission from an Isolated Neutron Star

    Full text link
    Isolated Neutron Stars are some of the most exciting stellar objects known to astronomers: they have the most extreme magnetic fields, with values up to 101510^{15} G, and, with the exception of stellar-mass black holes, they are the most dense stars, with densities of ≈1014\approx 10^{14} g cm−3^{-3}. As such, they are perfect laboratories to test theories of electromagnetism and nuclear physics under conditions of magnetic field and density unattainable on Earth. In particular, the interaction of radiation with strong magnetic fields is the cause of the {\em vacuum birefringence}, an effect predicted by quantum electrodynamics in 1936 but that lacked an observational evidence until now. Here, we show how the study of the polarisation of the optical radiation from the surface of an isolated neutron star yielded such an observational evidence, opening exciting perspectives for similar studies at other wavelengths.Comment: 5 pages, 1 figure, Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    Modelling Magnetar Behaviour with 3D Magnetothermal Simulations

    Get PDF
    The observational properties of isolated NSs are shaped by their magnetic field and surface temperature. They evolve in a strongly coupled fashion, and modelling them is key in understanding the emission properties of NSs. Much effort was put in tackling this problem in the past but only recently a suitable 3D numerical framework was developed. We present a set of 3D simulations addressing both the long-Term evolution (≈ 104-106 yrs) and short-lived outbursts (â 1 yr). Not only a 3D approach allows one to test complex field geometries, but it is absolutely key to model magnetar outbursts, which observations associate to the appearance of small, inherently asymmetric hot regions. Even though the mechanism that triggers these phenomena is not completely understood, following the evolution of a localised heat injection in the crust serves as a model to study the unfolding of the event

    Evidence of vacuum birefringence from the polarisation of the optical emission from an Isolated Neutron Star

    Get PDF
    Isolated Neutron Stars are some of the most exciting stellar objects known to astronomers: they have the most extreme magnetic fields, with values up to 1015 G, and, with the exception of stellar-mass black holes, they are the most dense stars, with densities of ≈ 1014 g cm−3 . As such, they are perfect laboratories to test theories of electromagnetism and nuclear physics under conditions of magnetic field and density unattainable on Earth. In particular, the interaction of radiation with strong magnetic fields is the cause of the vacuum birefringence, an effect predicted by quantum electrodynamics in 1936 but that lacked an observational evidence until now. Here, we show how the study of the polarisation of the optical radiation from the surface of an isolated neutron star yielded such an observational evidence, opening exciting perspectives for similar studies at other wavelengths

    Vacuum birefringence and X-ray polarimetry in transient magnetars

    Get PDF
    Recent optical polarimetry observations of an X-ray dim isolated neutron star, RX J1856.5-3754, showed a first evidence for QED vacuum birefringence induced by a strong magnetic field. This important result can be confirmed by performing systematically polarimetry observations in the X-ray band for other strongly magnetized neutron stars, such as transient or persistent magnetars. We computed the phase averaged polarization fraction (PF) and polarization angle (PA) expected in the thermal emission from transient magnetars in the soft X-ray energy band. We found that the detection of a PF higher than 60% is a strong evidence for vacuum birefringence. We also found that a steady change in the PA measured from transient magnetars during their outburst decay (up to 23 degrees for a magnetospheric untwisting of 0.5 rad) is a strong signature of vacuum birefringence. This latter detection would also provide an independent check of the magnetospheric untwisting model for these sources. Simulations show that these measurements are achievable by future polarimetric missions such as XIPE and IXPE with 20-380 ks of observational time, and with eXTP with 3-60 ks

    Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity

    Get PDF
    The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior

    Three-dimensional Modeling of the Magnetothermal Evolution of Neutron Stars: Method and Test Cases

    Get PDF
    Neutron stars harbor extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution and, hence, the star's observational properties. In this work, we present the first realistic simulations of the coupled crustal magnetothermal evolution of isolated neutron stars in three dimensions accounting for neutrino emission, obtained with the pseudo-spectral code parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localized energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds ≈1015\approx {10}^{15} G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localized heat deposition in the crust results in the appearance of hot spots on the star surface, which can exhibit a variety of patterns. Because the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451

    A Computational Study to Identify TP53 and SREBF2 as Regulation Mediators of miR-214 in Melanoma Progression

    Get PDF
    In the complex world of post-transcriptional regulation, miR-214 is known to control in vitro tumor cell move- ment and survival to anoikis, as well as in vivo malignant cell extravasation from blood vessels and lung metastasis formation. miR-214 has also been found to be highly expressed in human melanomas, and to directly and indirectly regulate several genes involved in tumor progression and in the establishment of dis- tant metastases (Penna et al., 2011). In this work, we exploit a computational pipeline integrating data from multiple online data repositories to identify the presence of transcriptional or post-transcriptional regulatory modules involving miR-214 and a set of 73 previously identified miR-214 regulated genes. We identified 27 putative regulatory modules involving miR-214, NFKB1, SREBPF2, miR-33a and 9 out of the 73 miR-214 modulated genes (ALCAM, POSTN, TFAP2A, ADAM9, NCAM1, SEMA3A, PVRL2, JAG1, EGFR1). As a pre- liminary experimental validation we focused on 9 out of the 27 identified regulatory modules that involve two main players, miR-33a and SREBF2. The results confirm the importance of the predictions obtained with the presented computational approach
    • …
    corecore