6 research outputs found

    Translating principles of quality control to cardiovascular magnetic resonance: assessing quantitative parameters of the left ventricle in a large cohort

    Get PDF
    Cardiac magnetic resonance (CMR) examinations require standardization to achieve reproducible results. Therefore, quality control as known as in other industries such as in-vitro diagnostics, could be of essential value. One such method is the statistical detection of long-time drifts of clinically relevant measurements. Starting in 2010, reports from all CMR examinations of a high-volume center were stored in a hospital information system. Quantitative parameters of the left ventricle were analyzed over time with moving averages of different window sizes. Influencing factors on the acquisition and on the downstream analysis were captured. 26,902 patient examinations were exported from the clinical information system. The moving median was compared to predefined tolerance ranges, which revealed an overall of 50 potential quality relevant changes ("alerts") in SV, EDV and LVM. Potential causes such as change of staff, scanner relocation and software changes were found not to be causal of the alerts. No other influencing factors were identified retrospectively. Statistical quality assurance systems based on moving average control charts may provide an important step towards reliability of quantitative CMR. A prospective evaluation is needed for the effective root cause analysis of quality relevant alerts

    Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging

    Get PDF
    Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare CRs to ensure reproducibility. Convolutional Neural Network developers compare their results via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are calculated with geometric accuracy. Segmentations and CRs are connected to track errors and their effects. An interactive GUI makes the software accessible to different users. The software's multilevel comparison was tested on a use case based on cardiac function assessment. The software shows good reader agreement in CRs and segmentation metrics (Dice > 90%). Decomposing differences by cardiac position revealed excellent agreement in midventricular slices: > 90% but poorer segmentations in apical (> 71%) and basal slices (> 74%). Further decomposition by contour type locates the largest millilitre differences in the basal right cavity (> 3 ml). Visual inspection shows these differences being caused by different basal slice choices. The software illuminated reader differences on several levels. Producing spreadsheets and figures concerning metric values and CR differences was automated. A multilevel reader comparison is feasible and extendable to other cardiac structures in the future
    corecore