1,626 research outputs found
Logical Reduction of Metarules
International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times
Environmental effects on star formation in dwarf galaxies and star clusters
We develop a simple analytical criterion to investigate the role of the
environment on the onset of star formation. We will consider the main external
agents that influence the star formation (i.e. ram pressure, tidal interaction,
Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy
moving through an external environment. The theoretical framework developed
here has direct applications to the cases of dwarf galaxies in galaxy clusters
and dwarf galaxies orbiting our Milky Way system, as well as any primordial
gas-rich cluster of stars orbiting within its host galaxy. We develop an
analytic formalism to solve the fluid dynamics equations in a non-inertial
reference frame mapped with spherical coordinates. The two-fluids instability
at the interface between a stellar system and its surrounding hotter and less
dense environment is related to the star formation processes through a set of
differential equations. The solution presented here is quite general, allowing
us to investigate most kinds of orbits allowed in a gravitationally bound
system of stars in interaction with a major massive companion. We present an
analytical criterion to elucidate the dependence of star formation in a
spherical stellar system (as a dwarf galaxy or a globular cluster) on its
surrounding environment useful in theoretical interpretations of numerical
results as well as observational applications. We show how spherical
coordinates naturally enlighten the interpretation of the two-fluids
instability in a geometry that directly applies to astrophysical case. This
criterion predicts the threshold value for the onset of star formation in a
mass vs. size space for any orbit of interest. Moreover, we show for the first
time the theoretical dependencies of the different instability phenomena acting
on a system in a fully analytical way.Comment: ACCEPTED in A&A the 09/09/2014. Changes from ver 1: the non-inertial
linear-response theory for gas instabilities in spherical coordinates is
moved to the Appenidx and will be available only on-lin
A Detection of an Anti-correlated Hard X-ray Lag in AM Herculis
Context {Earlier cross-correlation studies for AM Her were performed in
various energy range from optical to X-ray and suggested that it mostly shows a
high level of correlation but on occasion it shows a low level of correlation
or uncorrelation.} Aims {To investigate the degree of correlation between soft
(2-4 keV) and hard (9-20 keV) X-rays, we perform the cross-correlation study of
the X-ray data sets of AM Her obtained with {\it RXTE}.}
Methods {We cross-correlate the background-subtracted soft and hard X-ray
light curves using the XRONOS program crosscor and fit a model to the obtained
cross-correlation functions.}
Results {We detect a hard X-ray lag of s in a specific section of
energy-dependent light curve, where the soft X-ray (2-4 keV) intensity
decreases but the hard X-ray (9-20 keV) intensity increases. From a spectral
analysis, we find that the X-ray emission temperature increases during the
anti-correlated intensity variation. In two other observations, the
cross-correlation functions show a low level of correlation, which is
consistent with the earlier results performed in a different energy range.}
Conclusions {We report a detection of an anti-correlated hard X-ray lag of
190 s from the proto-type polar AM Her. The hard X-ray lag is detected
for the first time in the given energy range, and it is the longest lag among
those reported in magnetic cataclysmic variables. We discuss the implications
of our findings regarding the origin of the hard X-ray lag and the
anti-correlated intensity variation.}Comment: Accepted in A&A, 4 page
Stellar Motion around Spiral Arms: Gaia Mock Data
We compare the stellar motion around a spiral arm created in two different
scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms.
We generate Gaia mock data from snapshots of the simulations following these
two scenarios using our stellar population code, SNAPDRAGONS, which takes into
account dust extinction and the expected Gaia errors. We compare the observed
rotation velocity around a spiral arm similar in position to the Perseus arm,
and find that there is a clear difference in the velocity features around the
spiral arm between the co-rotating spiral arm and the density-wave-like spiral
arm. Our result demonstrates that the volume and accuracy of the Gaia data are
sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way
Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona,
1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira
Gas and Stellar Motions and Observational Signatures of Co-Rotating Spiral Arms
We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics
simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we
can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm,
i.e. the spiral arm rotates with the same speed as the circular speed. We
observed the rotation and radial velocities of the gas and stars as a function
of the distance from our assumed location of the observer at the three lines of
sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find
that the stars tend to rotate slower (faster) behind (at the front of) the
spiral arm and move outward (inward), because of the radial migration. However,
because of their epicycle motion, we see a variation of rotation and radial
velocities around the spiral arm. On the other hand, the cold gas component
shows a clearer trend of rotating slower (faster) and moving outward (inward)
behind (at the front of) the spiral arm, because of the radial migration. We
have compared the results with the velocity of the maser sources from Reid et
al. (2014), and find that the observational data show a similar trend in the
rotation velocity around the expected position of the spiral arm at l = 120
deg. We also compared the distribution of the radial velocity from the local
standard of the rest, V_LSR, with the APOGEE data at l = 90 deg as an example.Comment: 10 pages, 7 figures, accepted for publication in MNRA
The stellar kinematics of co-rotating spiral arms in Gaia mock observations
We have observed an N-body/Smoothed Particle Hydrodynamics simulation of a
Milky Way like barred spiral galaxy. We present a simple method that samples
N-body model particles into mock Gaia stellar observations and takes into
account stellar populations, dust extinction and Gaia's science performance
estimates. We examine the kinematics around a nearby spiral arm at a similar
position to the Perseus arm at three lines of sight in the disc plane;
(l,b)=(90,0), (120,0) and (150,0) degrees. We find that the structure of the
peculiar kinematics around the co-rotating spiral arm, which is found in Kawata
et al. (2014b), is still visible in the observational data expected to be
produced by Gaia despite the dust extinction and expected observational errors
of Gaia. These observable kinematic signatures will enable testing whether the
Perseus arm of the Milky Way is similar to the co-rotating spiral arms commonly
seen in N-body simulations.Comment: 9 pages 4 Figures, submitted to MNRAS 22nd Dec 201
VLT/FORS2 observations of the optical counterpart of the isolated neutron star RBS 1774
X-ray observations performed with ROSAT led to the discovery of a group
(seven to date) of X-ray dim and radio-silent middle-aged isolated neutron
stars (a.k.a. XDINSs), which are characterised by pure blackbody spectra
(kT~40-100 eV), long X-ray pulsations (P=3-12 s), and appear to be endowed with
relatively high magnetic fields, (B~10d13-14 G). RBS 1774 is one of the few
XDINSs with a candidate optical counterpart, which we discovered with the VLT.
We performed deep observations of RBS 1774 in the R band with the VLT to
disentangle a non-thermal power-law spectrum from a Rayleigh-Jeans, whose
contributions are expected to be very much different in the red part of the
spectrum. We did not detect the RBS 1774 candidate counterpart down to a 3
sigma limiting magnitude of R~27. The constraint on its colour, (B-R)<0.6,
rules out that it is a background object, positionally coincident with the
X-ray source. Our R-band upper limit is consistent with the extrapolation of
the B-band flux (assuming a 3 sigma uncertainty) for a set of power-laws F_nu
~nu^alpha with spectral indeces alpha<0.07. If the optical spectrum of RBS 1774
were non-thermal, its power-law slope would be very much unlike those of all
isolated neutron stars with non-thermal optical emission, suggesting that it is
most likely thermal. For instance, a Rayleigh-Jeans with temperature T_O = 11
eV, for an optically emitting radius r_O=15 km and a source distance d=150 pc,
would be consistent with the optical measurements. The implied low distance is
compatible with the 0.04 X-ray pulsed fraction if either the star spin axis is
nearly aligned with the magnetic axis or with the line of sight, or it is
slightly misaligned with respect to both the magnetic axis and the line of
sight by 5-10 degreesComment: 8 pages, 8 postscript figures, accepted for publication in Astronomy
& Astrophysic
- …