4 research outputs found

    Preparation and Characterization of Tin Oxide Thin Films

    Get PDF
    Tin oxide (SnO) thin films were prepared onto glass substrates by thermal evaporation under vacuum. The substrate temperature was kept constant at 300 K during the film growth. The structural studies using transmission electron microscopy (TEM) analysis showed that the SnO thin films have a polycrystalline and tetragonal crystal structure with preferential orientation of (110) planes parallel to the substrate. Optical transmission and reflection spectra, at normal incidence, in the spectral range 300-1100 nm, are investigated. The optical properties of SnO thin films were determined. The optical energy band gap, Eg, has been estimated from the absorption coefficient values using Tauc’s procedure. It is found that the SnO thin films exhibit direct band gap

    Clouds blown by the solar wind

    No full text
    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid–high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid–high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others
    corecore