1,176 research outputs found
Beam Coupling Impedance Contribution of Flange Aperture Gaps: A Numerical Study for Elettra 2.0
The accurate analysis of any possible source of beam instability is mandatory for the design of a new particle accelerator, especially for high-current and ultra-low emittance synchrotrons. In the specific case of instabilities driven by the coupling between the charged particle beam and the electromagnetic field excited by the beam itself, the corresponding effect is estimated through the beam coupling impedance. The modeling of this effect is essential to perform a rigorous evaluation of the coupling impedance budget able to account for all devices present in the entire machine. To deal with this problem, this paper focuses on the estimation of the contribution of the joints lying between the different vacuum chamber sections, by performing a comparative numerical analysis that takes into account different aperture gaps between the flanges. The results point out the criticality of many small-impedance contributions that, added together, must be lower than a predefined impedance threshold
BEAM ORBIT STABILITY AT ELETTRA
Abstract The top-up operation established since 2010 at the Elettra third-generation synchrotron light source has solved the problems related to thermal drifts and beam current dependence, and a series of feedback loops acting on the machine optics and radio-frequency systems made easier to setup and operate the ring. Those systems together with the fast orbit feedback in operation since 2007, contributed to very high electron beam orbit stability. A description of the active systems and their performance, future perspectives as well as some still open issues will be presented and discussed
A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo
We present a method to search for transient GWs using a network of detectors
with different spectral and directional sensitivities: the interferometer Virgo
and the bar detector AURIGA. The data analysis method is based on the
measurements of the correlated energy in the network by means of a weighted
cross-correlation. To limit the computational load, this coherent analysis step
is performed around time-frequency coincident triggers selected by an excess
power event trigger generator tuned at low thresholds. The final selection of
GW candidates is performed by a combined cut on the correlated energy and on
the significance as measured by the event trigger generator. The method has
been tested on one day of data of AURIGA and Virgo during September 2005. The
outcomes are compared to the results of a stand-alone time-frequency
coincidence search. We discuss the advantages and the limits of this approach,
in view of a possible future joint search between AURIGA and one
interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7
Proceeding
The variable finesse locking technique
Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Virgo calibration and reconstruction of the gravitational wave strain during VSR1
Virgo is a kilometer-length interferometer for gravitational waves detection
located near Pisa. Its first science run, VSR1, occured from May to October
2007. The aims of the calibration are to measure the detector sensitivity and
to reconstruct the time series of the gravitational wave strain h(t). The
absolute length calibration is based on an original non-linear reconstruction
of the differential arm length variations in free swinging Michelson
configurations. It uses the laser wavelength as length standard. This method is
used to calibrate the frequency dependent response of the Virgo mirror
actuators and derive the detector in-loop response and sensitivity within ~5%.
The principle of the strain reconstruction is highlighted and the h(t)
systematic errors are estimated. A photon calibrator is used to check the sign
of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz
with systematic errors estimated to 6% in amplitude. The phase error is
estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be
published in Journal of Physics Conference Series (JPCS). Second release:
correct typo
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …