2 research outputs found

    Instabilities of captured shocks in the envelopes of massive stars

    Full text link
    The evolution of strange mode instabilities into the non linear regime has been followed by numerical simulation for an envelope model of a massive star having solar chemical composition, M=50M_sun, T_eff=10^4K and L=1.17*10^6 L_sun. Contrary to previously studied models, for these parameters shocks are captured in the H-ionisation zone and perform rapid oscillations within the latter. A linear stability analysis is performed to verify that this behaviour is physical. The origin of an instability discovered in this way is identified by construction of an analytical model. As a result, the stratification turns out to be essential for instability. The difference to common stratification instabilities, e.g., convective instabilities, is discussed.Comment: 16 pages, 6 figures, accepted for publication in MNRA

    Simulation of stellar instabilities with vastly different timescales using domain decomposition

    Full text link
    Strange mode instabilities in the envelopes of massive stars lead to shock waves, which can oscillate on a much shorter timescale than that associated with the primary instability. The phenomenon is studied by direct numerical simulation using a, with respect to time, implicit Lagrangian scheme, which allows for the variation by several orders of magnitude of the dependent variables. The timestep for the simulation of the system is reduced appreciably by the shock oscillations and prevents its long term study. A procedure based on domain decomposition is proposed to surmount the difficulty of vastly different timescales in various regions of the stellar envelope and thus to enable the desired long term simulations. Criteria for domain decomposition are derived and the proper treatment of the resulting inner boundaries is discussed. Tests of the approach are presented and its viability is demonstrated by application to a model for the star P Cygni. In this investigation primarily the feasibility of domain decomposition for the problem considered is studied. We intend to use the results as the basis of an extension to two dimensional simulations.Comment: 15 pages, 10 figures, published in MNRA
    corecore