88 research outputs found
Calculation of percolation thresholds in high dimensions for fcc, bcc, and diamond lattices
In a recent article, Galam and Mauger proposed an invariant for site and bond
percolation thresholds, based on known values for twenty lattices (Eur. Phys.
J. B 1 (1998) 255-258). Here we give a larger list of values for more than
forty lattices in two to six dimensions. In this list are new results for fcc,
bcc, and diamond lattices in 4, 5, and 6 dimensions.
The list contains examples of lattices with equal site percolation
thresholds, but different bond percolation thresholds. These and other examples
show that there are deviations from the proposed invariant of up to 12% in two
dimensions, increasing to 69% in higher dimensions.Comment: 12 pages, 3 figures (EPS), LaTe
Site percolation and random walks on d-dimensional Kagome lattices
The site percolation problem is studied on d-dimensional generalisations of
the Kagome' lattice. These lattices are isotropic and have the same
coordination number q as the hyper-cubic lattices in d dimensions, namely q=2d.
The site percolation thresholds are calculated numerically for d= 3, 4, 5, and
6. The scaling of these thresholds as a function of dimension d, or
alternatively q, is different than for hypercubic lattices: p_c ~ 2/q instead
of p_c ~ 1/(q-1). The latter is the Bethe approximation, which is usually
assumed to hold for all lattices in high dimensions. A series expansion is
calculated, in order to understand the different behaviour of the Kagome'
lattice. The return probability of a random walker on these lattices is also
shown to scale as 2/q. For bond percolation on d-dimensional diamond lattices
these results imply p_c ~ 1/(q-1).Comment: 11 pages, LaTeX, 8 figures (EPS format), submitted to J. Phys.
Burst dynamics during drainage displacements in porous media: Simulations and experiments
We investigate the burst dynamics during drainage going from low to high
injection rate at various fluid viscosities. The bursts are identified as
pressure drops in the pressure signal across the system. We find that the
statistical distribution of pressure drops scales according to other systems
exhibiting self-organized criticality. The pressure signal was calculated by a
network model that properly simulates drainage displacements. We compare our
results with corresponding experiments.Comment: 7 pages, 4 figures. Submitted to Europhys. Let
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
Precise determination of the bond percolation thresholds and finite-size scaling corrections for the s.c., f.c.c., and b.c.c. lattices
Extensive Monte-Carlo simulations were performed to study bond percolation on
the simple cubic (s.c.), face-centered cubic (f.c.c.), and body-centered cubic
(b.c.c.) lattices, using an epidemic kind of approach. These simulations
provide very precise values of the critical thresholds for each of the
lattices: pc(s.c.) = 0.248 812 6(5), pc(f.c.c.) = 0.120 163 5(10), and
pc(b.c.c.) = 0.180 287 5(10). For p close to pc, the results follow the
expected finite-size and scaling behavior, with values for the Fisher exponent
(2.189(2)), the finite-size correction exponent (0.64(2)), and
the scaling function exponent (0.445(1)) confirmed to be universal.Comment: 16 pgs, 7 figures, LaTeX, to be published in Phys. Rev.
Determination of the bond percolation threshold for the Kagome lattice
The hull-gradient method is used to determine the critical threshold for bond
percolation on the two-dimensional Kagome lattice (and its dual, the dice
lattice). For this system, the hull walk is represented as a self-avoiding
trail, or mirror-model trajectory, on the (3,4,6,4)-Archimedean tiling lattice.
The result pc = 0.524 405 3(3) (one standard deviation of error) is not
consistent with the previously conjectured values.Comment: 10 pages, TeX, Style file iopppt.tex, to be published in J. Phys. A.
in August, 199
Percolation on two- and three-dimensional lattices
In this work we apply a highly efficient Monte Carlo algorithm recently
proposed by Newman and Ziff to treat percolation problems. The site and bond
percolation are studied on a number of lattices in two and three dimensions.
Quite good results for the wrapping probabilities, correlation length critical
exponent and critical concentration are obtained for the square, simple cubic,
HCP and hexagonal lattices by using relatively small systems. We also confirm
the universal aspect of the wrapping probabilities regarding site and bond
dilution.Comment: 15 pages, 6 figures, 3 table
Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer
We studied the presence of lymphangiogenesis in lymph node (LN) metastases of breast cancer. Lymph vessels were present in 52 of 61 (85.2%) metastatically involved LNs vs 26 of 104 (25.0%) uninvolved LNs (P<0.001). Furthermore, median intra- and perinodal lymphatic endothelial cell proliferation fractions were higher in metastatically involved LNs (P<0.001). This is the first report demonstrating lymphangiogenesis in LN metastases of cancer in general and breast cancer in particular
Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation
Extensive Monte-Carlo simulations were performed to evaluate the excess
number of clusters and the crossing probability function for three-dimensional
percolation on the simple cubic (s.c.), face-centered cubic (f.c.c.), and
body-centered cubic (b.c.c.) lattices. Systems L x L x L' with L' >> L were
studied for both bond (s.c., f.c.c., b.c.c.) and site (f.c.c.) percolation. The
excess number of clusters per unit length was confirmed to be a
universal quantity with a value . Likewise, the
critical crossing probability in the L' direction, with periodic boundary
conditions in the L x L plane, was found to follow a universal exponential
decay as a function of r = L'/L for large r. Simulations were also carried out
to find new precise values of the critical thresholds for site percolation on
the f.c.c. and b.c.c. lattices, yielding , .Comment: 14 pages, 7 figures, LaTeX, submitted to J. Phys. A: Math. Gen, added
references, corrected typo
Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions
We develop a method of constructing percolation clusters that allows us to
build very large clusters using very little computer memory by limiting the
maximum number of sites for which we maintain state information to a number of
the order of the number of sites in the largest chemical shell of the cluster
being created. The memory required to grow a cluster of mass s is of the order
of bytes where ranges from 0.4 for 2-dimensional lattices
to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate
, the exponent relating the minimum path to the
Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site
and bond percolation, we find (4D) and
(5D). In order to determine
to high precision, and without bias, it was necessary to
first find precise values for the percolation threshold, :
(4D) and (5D) for site and
(4D) and (5D) for bond
percolation. We also calculate the Fisher exponent, , determined in the
course of calculating the values of : (4D) and
(5D)
- …