113 research outputs found
GOLPH2 expression may serve as diagnostic marker in seminomas
ABSTRACT: BACKGROUND: GOLPH2 (Golgi phosphoprotein 2) is a novel Golgi membrane protein. Despite its unknown physiologic function, however, it has been proposed as a biomarker for hepatocellular and prostate carcinoma due to its upregulation in those cancer entities. Whether the overexpression of GOLPH2 is tumour specific or a generic parameter of malignancy and whether this finding is true for additional carcinomas has not been determined. In this study, we aimed to evaluate the expression pattern of GOLPH2 in testicular seminomas, the most common histologic subtype of testicular neoplasm. METHODS: GOLPH2 protein expression was assessed by immunohistochemistry in 69 testicular seminomas and compared to the expression rates in matching normal testicular tissue and intratubular germ cell neoplasia of unclassified type (IGCNU). In addition, a subset of Leydig cell tumours was analyzed accordingly. RESULTS: GOLPH2 was consistently overexpressed (89.9%) in seminomas. Matching non-neoplastic tissue showed weak or negative staining. The observed differences between non-neoplastic and neoplastic tissue were statistically highly significant (p < 0.001). There were no significant associations with tumour status. Interestingly, GOLPH2 was also highly expressed in the intertubular Leydig cells as well as in Leydig cell tumours. CONCLUSIONS: GOLPH2 protein is highly expressed in seminomas and in Leydig cell tumours. This study fosters the association of GOLPH2 with malignant neoplastic processes. The staining pattern is easily assessable and consistent which is a favourable property especially in clinical settings. GOLPH2 could be a novel immunohistochemical marker for the assessment of testicular neoplasms, especially against the background that in analogy to hepatocellular carcinomas complementary GOLPH2 serum levels might be helpful in detecting metastases or recurrent tumour. Therefore serum studies and analyses of GOLPH2 expression in non-seminomatous germ cell tumours are strongly warranted
Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis
The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders
A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders
Glycomics using mass spectrometry
Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer
- …