47,661 research outputs found

    Contracted Representation of Yang's Space-Time Algebra and Buniy-Hsu-Zee's Discrete Space-Time

    Full text link
    Motivated by the recent proposition by Buniy, Hsu and Zee with respect to discrete space-time and finite spatial degrees of freedom of our physical world with a short- and a long-distance scales, lPl_P and L,L, we reconsider the Lorentz-covariant Yang's quantized space-time algebra (YSTA), which is intrinsically equipped with such two kinds of scale parameters, λ\lambda and RR. In accordance with their proposition, we find the so-called contracted representation of YSTA with finite spatial degrees of freedom associated with the ratio R/λR/\lambda, which gives a possibility of the divergence-free noncommutative field theory on YSTA. The canonical commutation relations familiar in the ordinary quantum mechanics appear as the cooperative Inonu-Wigner's contraction limit of YSTA, λ0\lambda \to 0 and $R \to \infty.

    A Viscoelastic model of phase separation

    Full text link
    We show here a general model of phase separation in isotropic condensed matter, namely, a viscoelastic model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely cause the transient gellike behavior, which makes both bulk and shear modes active. Although such attractive interactions between molecules of the same component exist universally in the two-phase region of a mixture, the stress arising from attractive interactions is asymmetrically divided between the components only in dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus, the interaction network between the slower components, which can store the elastic energy against its deformation through bulk and shear moduli, is formed. It is the bulk relaxation modulus associated with this interaction network that is primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and the phase inversion. We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that can describe all types of isotropic phase separation including solid and fluid models as its special cases without any exception, if there is no coupling with additional order parameter. The physical origin of volume shrinking behavior during viscoelastic phase separation and the universality of the resulting spongelike structure are also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev

    Theory of magnetotunneling spectroscopy in spin triplet p-wave superconductors

    Full text link
    We study the influence of a magnetic field HH on the zero-bias conductance peak (ZBCP) due to zero-energy Andreev bound state (ZES) in normal metal / unconventional superconductor. For p-wave junctions, ZBCP does not split into two by HH even for sufficiently low transparent junctions, where ZBCP clearly splits for d-wave. This unique property originates from the fact that for p-wave superconductors, perpendicularly injected quasiparticle form ZES, which contribute most dominantly on the tunneling conductance. In addition, we show that for pxp_{x}+ipyp_{y}-wave superconductor junctions, the height of ZBCP is sensitive to HH due to the formation of broken time reversal symmetry state. We propose that tunneling spectroscopy in the presence of magnetic field, i.e.i.e., magnetotunnelingmagnetotunneling, is an promising method to determine the pairing symmetry of unconventional superconductors.Comment: 4 pages, 6 figures, using jpsj2.cl

    Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots

    Get PDF
    The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1370 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition to three dimensional finite-difference time-domain calculations, an analytical model is introduced that is able to reproduce the wavelength dependence of the reflected intensity observed in the experiment.Comment: 24 pages, 7 figures, corrected+full versio

    A nucleosome-free dG-dC-rich sequence element promotes constitutive transcription of the essential yeast RIO1 gene

    Get PDF
    RIO1 is an essential gene that encodes a protein serine kinase and is transcribed constitutively at a very low level. Transcriptional activation of RIO1 dispenses with a canonical TATA box as well as with classical transactivators or specific DNAbinding factors. Instead, a dGdCrich sequence element, that is located 40 to 48 bp upstream the single site of mRNA initiation, is essential and presumably constitutes the basal promoter. In addition, we demonstrate here that this promoter element comprises a nucleosomefree gap which is centered at the dGdC tract and flanked by two positioned nucleosomes. This element is both, necessary and sufficient, for basal transcription initiation at the RIO1 promoter and, thus, constitutes a novel type of core promoter element

    Cosmic censorship in overcharging a Reissner-Nordstr\"{o}m black hole via charged particle absorption

    Full text link
    There is a claim that a static charged black hole (Reissner-Nordstr\"{o}m black hole) can be overcharged by absorbing a charged test particle. If it is true, it might give a counter example to the weak cosmic censorship conjecture, which states that spacetime singularities are never observed by a distant observer. However, so far the proposed process has only been analyzed within a test particle approximation. Here we claim that the back reaction effects of a charged particle cannot be neglected when judging whether the suggested process is really a counter example to the cosmic censorship conjecture or not. Furthermore, we argue that all the back reaction effects can be properly taken into account when we consider the trajectory of a particle on the border between the plunge and bounce orbits. In such marginal cases we find that the Reissner-Nordstr\"{o}m black hole can never be overcharged via the absorption of a charged particle. Since all the plunge orbits are expected to have a higher energy than the marginal orbit, we conclude that there is no supporting evidence that indicates the violation of the cosmic censorship in the proposed overcharging process.Comment: 18 pages, revtex4, minor revision and reference added, version to appear in PR

    Theory of Spin polarized Tunneling in Superconducting Sr2RuO4

    Full text link
    A theory of tunneling conductance in ferromagnetic metal/insulator/triplet - supercondcutor junctions is presented for unitary and non-unitary spin triplet pairing states which are promising candidates for the superconducting paring symmetry of Sr2RuO4. As the magnitude of the exchange interaction in the ferromagnetic metal is increased, the conductance for the unitary pairing state below the energy gap is reduced in contrast to the case for the non-unitary pairing state

    On broad iron K-alpha lines in Seyfert 1 galaxies

    Full text link
    The X-ray spectrum obtained by Tanaka et al from a long observation of the active galaxy MCG63015-6-30-15 shows a broad iron Kα\alpha line skewed to low energies. The simplest interpretation of the shape of the line is that it is due to doppler and gravitational redshifts from the inner parts of a disk about a massive black hole. Similarly broad lines are evident in shorter observations of several other active galaxies. In this paper we investigate other line broadening and skewing mechanisms such as Comptonization in cold gas and doppler shifts from outflows. We have also fitted complex spectral models to the data of MCG63015-6-30-15 to see whether the broad skewed line can be mimicked well by other absorption or emission features. No satisfactory mechanism or spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors
    corecore