20,359 research outputs found

    On the choice of parameters in solar structure inversion

    Get PDF
    The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Amongst the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the Subtractive Optimally Localized Averages (SOLA) and Multiplicative Optimally Localized Averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.Comment: 14 pages, 15 figures. Accepted for publication on MNRA

    NIR Luminosity Function of Galaxies in Close Major-Merger Pairs and Mass Dependence of Merger Rate

    Full text link
    A sample of close major-merger pairs (projected separation 5r20h1{\rm 5 \leq r \leq 20 h^{-1}} kpc, Ks{\rm K_s} band magnitude difference δKs1\delta {\rm K_s} \leq 1 mag) is selected from the matched 2MASS-2dFGRS catalog of Cole et al. (2001). The pair primaries are brighter than Ks=12.5{\rm K_s} = 12.5 mag. After corrections for various biases, the comparison between counts in the paired galaxy sample and counts in the parent sample shows that for the local `M* galaxies' sampled by flux limited surveys, the fraction of galaxies in the close major-merger pairs is 1.70±0.32\pm 0.32%. Using 38 paired galaxies in the sample, a Ks{\rm K_s} band luminosity function (LF) is calculated. This is the first unbiased LF for a sample of objectively defined interacting/merging galaxies in the local universe, while all previously determined LFs of paired galaxies are biased by mistreating paired galaxies as singles. A stellar mass function (MF) is translated from the LF. Compared to the LF/MF of 2MASS galaxies, a differential pair fraction function is derived. The results suggest a trend in the sense that less massive galaxies may have lower chance to be involved in close major-merger pairs than more massive galaxies. The algorithm presented in this paper can be easily applied to much larger samples of 2MASS galaxies with redshifts in near future.Comment: Accepted by ApJL, 16 pages, 2 figure

    On The Determination of MDI High-Degree Mode Frequencies

    Full text link
    The characteristic of the solar acoustic spectrum is such that mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases for a given order. A direct consequence of this property is that individual p-modes are only resolved at low and intermediate degrees, and that at high degrees, individual modes blend into ridges. Once modes have blended into ridges, the power distribution of the ridge defines the ridge central frequency and it will mask the true underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present the results of fitting high degree power ridges (up to l = 900) computed from several two to three-month-long time-series of full-disk observations taken with the Michelson Doppler Imager (MDI) on-board the Solar and Heliospheric Observatory between 1996 and 1999. We also present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than some ad hoc correction scheme) resulting in a methodology that can produce an unbiased determination of high-degree modes, once the instrumental characteristics are well understood. Finally, we present changes in high degree mode parameters with epoch and thus solar activity level and discuss their significance.Comment: 59 pages, 38 figures -- High-resolution version at http://www-sgk.harvard.edu:1080/~sylvain/preprints/ -- Manuscript submitted to Ap

    Tomografia passiva costiera (TOMPACO). Inversion results with passive data - phase 3

    Get PDF
    Rep 02/03 - SiPLAB 28/March/2003This report shows the acoustic inversion results obtained on the INTIFANTE’00 data set, Events II, IV, V and VI

    Matched-field tomography using an acoustic oceanographic buoy

    Get PDF
    The Acoustic Oceanographic Buoy (AOB) is a light acoustic receiving device that is being developed in the framework of a joint research project and tested during the Maritime Rapid Environmental Assessment (MREA) sea trials. One of the AOB’s application is in Matched-Field Tomography (MFT) when a reduced number of receivers is available in opposition to traditional systems used in tomography. One problem of chief importance in MFT is the degree of uniqueness of the problem’s solution which is highly dependent on the number of receivers and on the number of free parameters. This paper studies the possibility of using matched-field processors with reduced ambiguity levels in comparison to conventional processors with application to acoustic data collected during the MREA sea trials. Two aspects are investigated: (a) the choice of an explicit broadband data model, where the exploitation of the spectral coherence of the acoustic field is seen as a mean to reduce the ambiguity level of the cost function used in the optimization; (b) conventional and high-resolution methods based on the proposed broadband model are implemented and compared.FC
    corecore