87,083 research outputs found

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System

    Full text link
    We study the Hilbert expansion for small Knudsen number ε\varepsilon for the Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi \theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\ }\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).OurmainresultstatesthatiftheHilbertexpansionisvalidat Our main result states that if the Hilbert expansion is valid at t=0forwell−preparedsmallinitialdatawithirrotationalvelocity for well-prepared small initial data with irrotational velocity u_0,thenitisvalidfor, then it is valid for 0\leq t\leq \varepsilon ^{-{1/2}\frac{2k-3}{2k-2}},where where \rho_{0}(t,x)and and u_{0}(t,x)satisfytheEuler−Poissonsystemformonatomicgas satisfy the Euler-Poisson system for monatomic gas \gamma=5/3$

    Plasmon assisted transmission of high dimensional orbital angular momentum entangled state

    Full text link
    We present an experimental evidence that high dimensional orbital angular momentum entanglement of a pair of photons can be survived after a photon-plasmon-photon conversion. The information of spatial modes can be coherently transmitted by surface plasmons. This experiment primarily studies the high dimensional entangled systems based on surface plasmon with subwavelength structures. It maybe useful in the investigation of spatial mode properties of surface plasmon assisted transmission through subwavelength hole arrays.Comment: 7 pages,6 figure

    Entanglement detection beyond the CCNR criterion for infinite-dimensions

    Get PDF
    In this paper, in terms of the relation between the state and the reduced states of it, we obtain two inequalities which are valid for all separable states in infinite-dimensional bipartite quantum systems. One of them provides an entanglement criterion which is strictly stronger than the computable cross-norm or realignment (CCNR) criterion.Comment: 11 page
    • …
    corecore