87,083 research outputs found
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System
We study the Hilbert expansion for small Knudsen number for the
Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term
takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi
\theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\
}\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).t=0u_00\leq t\leq \varepsilon
^{-{1/2}\frac{2k-3}{2k-2}},\rho_{0}(t,x) u_{0}(t,x)\gamma=5/3$
Plasmon assisted transmission of high dimensional orbital angular momentum entangled state
We present an experimental evidence that high dimensional orbital angular
momentum entanglement of a pair of photons can be survived after a
photon-plasmon-photon conversion. The information of spatial modes can be
coherently transmitted by surface plasmons. This experiment primarily studies
the high dimensional entangled systems based on surface plasmon with
subwavelength structures. It maybe useful in the investigation of spatial mode
properties of surface plasmon assisted transmission through subwavelength hole
arrays.Comment: 7 pages,6 figure
Entanglement detection beyond the CCNR criterion for infinite-dimensions
In this paper, in terms of the relation between the state and the reduced
states of it, we obtain two inequalities which are valid for all separable
states in infinite-dimensional bipartite quantum systems. One of them provides
an entanglement criterion which is strictly stronger than the computable
cross-norm or realignment (CCNR) criterion.Comment: 11 page
- …