16,372 research outputs found
Simulating STM transport in alkanes from first principles
Simulations of scanning tunneling microscopy measurements for molecules on
surfaces are traditionally based on a perturbative approach, most typically
employing the Tersoff-Hamann method. This assumes that the STM tip is far from
the sample so that the two do not interact with each other. However, when the
tip gets close to the molecule to perform measurements, the electrostatic
interplay between the tip and substrate may generate non-trivial potential
distribution, charge transfer and forces, all of which may alter the electronic
and physical structure of the molecule. These effects are investigated with the
ab initio quantum transport code SMEAGOL, combining non-equilibrium Green's
functions formalism with density functional theory. In particular, we
investigate alkanethiol molecules terminated with either CH3 or CF3 end-groups
on gold surfaces, for which recent experimental data are available. We discuss
the effects connected to the interaction between the STM tip and the molecule,
as well as the asymmetric charge transfer between the molecule and the
electrodes.Comment: 10 pages, 18 figure
First-Principles Study of Integer Quantum Hall Transitions in Mesoscopic Samples
We perform first principles numerical simulations to investigate resistance
fluctuations in mesoscopic samples, near the transition between consecutive
Quantum Hall plateaus. We use six-terminal geometry and sample sizes similar to
those of real devices. The Hall and longitudinal resistances extracted from the
generalized Landauer formula reproduce all the experimental features uncovered
recently. We then use a simple generalization of the Landauer-B\"uttiker model,
based on the interplay between tunneling and chiral currents -- the co-existing
mechanisms for transport -- to explain the three distinct types of fluctuations
observed, and identify the central region as the critical region.Comment: changes to acknowledgements onl
Efficient atomic self-interaction correction scheme for non-equilibrium quantum transport
Density functional theory calculations of electronic transport based on local
exchange and correlation functionals contain self-interaction errors. These
originate from the interaction of an electron with the potential generated by
itself and may be significant in metal-molecule-metal junctions due to the
localized nature of the molecular orbitals. As a consequence, insulating
molecules in weak contact with metallic electrodes erroneously form highly
conducting junctions, a failure similar to the inability of local functionals
of describing Mott-Hubbard insulators. Here we present a fully self-consistent
and still computationally undemanding self-interaction correction scheme that
overcomes these limitations. The method is implemented in the Green's function
non-equilibrium transport code Smeagol and applied to the prototypical cases of
benzene molecules sandwiched between gold electrodes. The self-interaction
corrected Kohn-Sham highest occupied molecular orbital now reproduces closely
the negative of the molecular ionization potential and is moved away from the
gold Fermi energy. This leads to a drastic reduction of the low bias current in
much better agreement with experiments.Comment: 4 pages, 5 figure
Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface
Recycling and reuse of wastewater after purification will reduce the environmental pollution as well as fulfill the increasing demand of water. Adsorption-based water treatment process is very popular for dye-house wastewater treatment. The present study deals with treatment of wastewater contaminated by reactive dye. TiO2 is used as adsorbent and the spent adsorbent has been regenerated by Advanced Oxidation Process (AOP), without using any other chemicals. TiO2 adsorbs dye molecules and then those dye molecules have been oxidized via a photocatalytic reaction in presence of UV irradiation. Kinetics of dye adsorption and photocatalytic oxidation reaction has been developed in this study. Photocatalyst adsorbent (TiO2) has been reused several times after regeneration. The activity of catalyst decreases after each cycle; due to poisoning cause by intermediate by-products. Kinetic of this catalyst deactivation has been incorporated with L–H model to develop the photocatalytic reaction kinetic model
Weak Localization and Transport Gap in Graphene Antidot Lattices
We fabricated and measured antidot lattices in single layer graphene with
lattice periods down to 90 nm. In large-period lattices, a well-defined quantum
Hall effect is observed. Going to smaller antidot spacings the quantum Hall
effect gradually disappears, following a geometric size effect. Lattices with
narrow constrictions between the antidots behave as networks of nanoribbons,
showing a high-resistance state and a transport gap of a few mV around the
Dirac point. We observe pronounced weak localization in the magnetoresistance,
indicating strong intervalley scattering at the antidot edges. The area of
phase-coherent paths is bounded by the unit cell size at low temperatures, so
each unit cell of the lattice acts as a ballistic cavity.Comment: some revisions, to appear in New Journal of Physics, Special Issue
Graphen
Electrical Conductance of Molecular Wires
Molecular wires (MW) are the fundamental building blocks for molecular
electronic devices. They consist of a molecular unit connected to two continuum
reservoirs of electrons (usually metallic leads). We rely on Landauer theory as
the basis for studying the conductance properties of MW systems. This relates
the lead to lead current to the transmission probability for an electron to
scatter through the molecule. Two different methods have been developed for the
study of this scattering. One is based on a solution of the Lippmann-Schwinger
equation and the other solves for the {\bf t} matrix using Schroedinger's
equation. We use our methodology to study two problems of current interest. The
first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold
nanocontacts. Our calculations show that the conductance is sensitive to the
chemical bonding between the molecule and the leads. The second system we study
highlights the interesting phenomenon of antiresonances in MW. We derive an
analytic formula predicting at what energies antiresonances should occur in the
transmission spectra of MW. A numerical calculation for a MW consisting of
filter molecules attached to an active molecule shows the existence of an
antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure
Role of electronic structure in photoassisted transport through atomic-sized contacts
We study theoretically quantum transport through laser-irradiated metallic
atomic-sized contacts. The radiation field is treated classically, assuming its
effect to be the generation of an ac voltage over the contact. We derive an
expression for the dc current and compute the linear conductance in one-atom
thick contacts as a function of the ac frequency, concentrating on the role
played by electronic structure. In particular, we present results for three
materials (Al, Pt, and Au) with very different electronic structures. It is
shown that, depending on the frequency and the metal, the radiation can either
enhance or diminish the conductance. This can be intuitively understood in
terms of the energy dependence of the transmission of the contacts in the
absence of radiation.Comment: 7 pages, 7 figures; four new figures adde
Quark number susceptibilities, strangeness and dynamical confinement
We report first results on the strange quark number susceptibility, chi_s,
over a large range of temperatures, mainly in the plasma phase of QCD. Chi_s
jumps across the phase transition temperature, T_c, and grows rapidly with
temperature above but close to T_c. For all quark masses and susceptibilities
in the entire temperature range studied, we found significant departures from
ideal-gas values. We also observed a strong correlation between these
quantities and the susceptibility in the scalar/pseudo-scalar channel,
supporting ideas of ``dynamical confinement'' in the high temperature phase of
the QCD plasma.Comment: 4 pages, 4 figure
On the Magnetic Nature of Quantum Point Contacts
We present results for a model that describes a quantum point contact. We
show how electron-electron correlations, within the unrestricted Hartree-Fock
approximation, generate a magnetic moment in the point contact. Having
characterized the magnetic structure of the contact, we map the problem onto a
simple one-channel model and calculate the temperature dependence of the
conductance for different gate voltages. Our results are in good agreement with
experimental results obtained in GaAs devices and support the idea of Kondo
effect in these systems.Comment: 7 pages, 4 figure
- …