413 research outputs found
Direct and Indirect Excitation of Laterodorsal Tegmental Neurons by Hypocretin/Orexin Peptides: Implications for Wakefulness and Narcolepsy
Compelling evidence links the recently discovered hypothalamic peptides Hypocretin/Orexin (Hcrt/Orx) to rapid eye movement sleep (REM) control and the sleep disorder narcolepsy, yet how they influence sleep-related systems is not well understood. We investigated the action of Hcrt/Orx on mesopontine cholinergic (MPCh) neurons of the laterodorsal tegmental nucleus (LDT), a target group whose function is altered in canine narcolepsy and appears pivotal for normal REM and wakefulness. Extracellular recordings from mouse brainstem slices revealed that Hcrt/Orx evoked prolonged firing of LDT neurons. Whole-cell recordings revealed that Hcrt/Orx had actions on both presynaptic neurons and at postsynaptic sites. Hcrt/Orx produced an increase in frequency and amplitude of spontaneous EPSCs without equivalent effect on IPSCs, by triggering action potentials and enhancing spike-evoked synaptic transmission in glutamatergic afferents. Postsynaptically, Hcrt/Orx produced an inward current and an increase in membrane current noise, which were accompanied by a conductance increase. These persisted in TTX, ionotropic glutamate receptor antagonists, and low extracellular calcium. Both presynaptic and postsynaptic actions were specific because they were not mimicked by an Hcrt/Orx fragment, and both actions were observed for cholinergic and noncholinergic LDT neurons. Finally, extracellular recordings during postsynaptic potential blockade demonstrated that postsynaptic actions of Hcrt/Orx alone could evoke prolonged firing. In the context of other recent work, our findings suggest that Hcrt/Orx neurons may coordinate the activity of the entire reticular activating system during waking. Moreover, these findings address specific hypotheses regarding the cellular mechanisms underlying REM disregulation in narcolepsy
Shifting of the magnetic resonance peak to lower energy in the superconducting state of underdoped YBa_2Cu_3O_{6.8}
Inelastic neutron scattering has been used to determine the dynamic spin
fluctuations in an underdoped high temperature superconductor YBCO_{6.8} single
crystal. The magnetic resonance, that occurs around 40 meV in overdoped
samples, is shifted to a lower energy, E_r= 34 meV. A constant ratio, , almost independent of the doping level, is found. According
to numerous theoretical approaches, this finding supports the idea that the
resonance energy is proportional (approximately twice) to the superconducting
gap.Comment: 8 pages, 3 figures, accepted in Europhysics Lette
Investigation of the electroplastic effect using nanoindentation
A promising approach to deform metallic-intermetallic composite materials is the application of electric current pulses during the deformation process to achieve a lower yield strength and enhanced elongation to fracture. This is known as the electroplastic effect. In this work, a novel setup to study the electroplastic effect during nanoindentation on individual phases and well-defined interfaces was developed. Using a eutectic Al-Al2Cu alloy as a model material, electroplastic nanoindentation results were directly compared with macroscopic electroplastic compression tests. The results of the micro- and macroscopic investigations reveal current induced displacement shifts and stress drops, respectively, with the first displacement shift/stress drop being higher than the subsequent ones. A higher current intensity, higher loading rate and larger pulsing interval all cause increased displacement shifts. This observation, in conjunction with the fact that the first displacement shift is highest, strongly indicates that de-pinning of dislocations from obstacles dominates the mechanical response, rather than solely thermal effects
Kramers degeneracy in a magnetic field and Zeeman spin-orbit coupling in antiferromagnets
In this article, I analyze the symmetries and degeneracies of electron
eigenstates in a commensurate collinear antiferromagnet. In a magnetic field
transverse to the staggered magnetization, a hidden anti-unitary symmetry
protects double degeneracy of the Bloch eigenstates at a special set of
momenta. In addition to this `Kramers degeneracy' subset, the manifold of
momenta, labeling the doubly degenerate Bloch states in the Brillouin zone, may
also contain an `accidental degeneracy' subset, that is not protected by
symmetry and that may change its shape under perturbation. These degeneracies
give rise to a substantial momentum dependence of the transverse g-factor in
the Zeeman coupling, turning the latter into a spin-orbit interaction.
I discuss a number of materials, where Zeeman spin-orbit coupling is likely
to be present, and outline the simplest properties and experimental
consequences of this interaction, that may be relevant to systems from chromium
to borocarbides, cuprates, hexaborides, iron pnictides, as well as organic and
heavy fermion conductors.Comment: 16+ pages, extended version of arXiv:0805.0378; revised versio
Resonant X-Ray Scattering on the M-Edge Spectra from Triple-k Structure Phase in U_{0.75}Np_{0.25}O_{2} and UO_{2}
We derive an expression for the scattering amplitude of resonant x-ray
scattering under the assumption that the Hamiltonian describing the
intermediate state preserves spherical symmetry. On the basis of this
expression, we demonstrate that the energy profile of the RXS spectra expected
near U and Np M_4 edges from the triple-k antiferromagnetic ordering phase in
UO_{2} and U_{0.75}Np_{0.25}O_{2} agree well with those from the experiments.
We demonstrate that the spectra in the \sigma-\sigma' and \sigma-\pi' channels
exhibit quadrupole and dipole natures, respectively.Comment: 3 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Supp
Interpocket polarization model for magnetic structures in rare-earth hexaborides
The origin of peculiar magnetic structures in cubic rare-earth (R)
hexaborides RB_6 is traced back to their characteristic band structure. The
three sphere-like Fermi surfaces induce interpocket polarization of the
conduction band as a part of a RKKY-type interaction. It is shown for the
free-electron-like model that the interpocket polarization gives rise to a
broad maximum in the intersite interaction I(q) around q=(1/4,1/4,1/2) in the
Brillouin zone. This maximum is consistent with the superstructure observed in
R=Ce, Gd and Dy. The wave-number dependence of I(q) is independently extracted
from analysis of the spin-wave spectrum measured for NdB_6. It is found that
I(q) obtained from fitting the data has a similarly to that derived by the
interpocket polarization model, except that the absolute maximum now occurs at
(0,0,1/2) in consistency with the A-type structure. The overall shape of I(q)
gives a hint toward understanding an incommensurate structure in PrB_6 as well.Comment: 5 pages, 3 figures, submitted to J.Phys.Soc.Jp
Neutron scattering study of transverse magnetism
In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed
Non-Collinear Magnetism due to Orbital Degeneracy and Multipolar Interactions
The origin of non-collinear magnetism under quadrupolar ordering is
investigated with CeB6 taken as a target system. The mode-mixing effect among
15 multipoles is analyzed based on the Ginzburg-Landau free energy. Then the
lower magnetic transition temperature and the order parameters are derived
within the mean-field approximation. In the presence of pseudo-dipole-type
interactions for the next-nearest neighbors, the observed pattern of
non-collinear ordering is indeed stabilized for certain set of interaction
parameters. The stability of the phase III' in the magnetic field is also
explained, which points to the importance of the next-nearest-neighbor
octupole-octupole interaction. Concerning the phase IV in CexLa1-xB6 with x ~
0.75, a possibility of pure octupole ordering is discussed based on slight
modifications of the strength of interactions.Comment: 12 pages, 7 figures, 3 tables, to appear in J. Phys. Soc. Jpn. 70 (6)
(2001
Neutron Scattering Study on Competition between Hidden Order and Antiferromagnetism in U(Ru_{1-x}Rh_x)_2Si_2 (x <= 0.05)
We have performed elastic and inelastic neutron scattering experiments on the
solid solutions U(Ru_{1-x}Rh_x)_2Si_2 for the Ru rich concentrations: x=0,
0.01, 0.02, 0.025, 0.03, 0.04 and 0.05. Hidden order is suppressed with
increasing x, and correspondingly the onset temperature T_m (~ 17.5 K at x=0)
of weak antiferromagnetic (AF) Bragg reflection decreases. For x=0.04 and 0.05,
no magnetic order is detected in the investigated temperature range down to 1.4
K. In the middle range, 0.02 <= x <= 0.03, we found that the AF Bragg
reflection is strongly enhanced. At x=0.02, this takes place at ~ 7.7 K (=T_M),
which is significantly lower than T_m (~ 13.7 K). T_M increases with increasing
x, and seems to merge with T_m at x=0.03. If the AF state is assumed to be
homogeneous, the staggered moment \mu_o estimated at 1.4 K increases from
0.02(2) \mu_B/U (x=0) to 0.24(1) \mu_B/U (x=0.02). The behavior is similar to
that observed under hydrostatic pressure (\mu_o increases to ~ 0.25 \mu_B/U at
1.0 GPa), suggesting that the AF evolution induced by Rh doping is due to an
increase in the AF volume fraction. We also found that the magnetic excitation
observed at Q=(1,0,0) below T_m disappears as T is lowered below T_M.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions
This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a
lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which
includes all the 3d states of the Cu ions and the 2p states of the O ions. We
also include spin-orbit interactions, hopping between ground and excited
crystal field states of the Cu ions, and rather general Coulomb interactions.
Our analytic results for the spin Hamiltonian, H, are corroborated by numerical
evaluations of the energy splitting of the ground manifold for two holes on
either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case
and for the model considered, we prove that H is rotationally invariant in the
absence of Coulomb exchange. When Coulomb exchange is present, each bond
Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For
lower symmetry situations, the single bond spin Hamiltonian is anisotropic at
order t**6 for constant U and at order t**2 for nonconstant U. (Constant U
means that the Coulomb interaction between orbitals does not depend on which
orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989
- …