201 research outputs found

    Species-level functional profiling of metagenomes and metatranscriptomes.

    Get PDF
    Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantification. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling of host-associated and environmental communities. HUMAnN2 identifies a community's known species, aligns reads to their pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in species' genomic versus transcriptional contributions, and strain profiling. Further, we introduce 'contributional diversity' to explain patterns of ecological assembly across different microbial community types

    Identification of Prophages in Bacterial Genomes by Dinucleotide Relative Abundance Difference

    Get PDF
    BACKGROUND: Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. METHODOLOGY: Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. CONCLUSIONS: The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Coordinated Translocation of Mammalian Gli Proteins and Suppressor of Fused to the Primary Cilium

    Get PDF
    Intracellular transduction of Hedgehog (Hh) signals in mammals requires functional primary cilia. The Hh signaling effectors, the Gli family of transcription factors, and their negative regulator, Suppressor of Fused (Sufu), accumulate at the tips of cilia; however, the molecular mechanism regulating this localization remains elusive. In the current study, we show that the ciliary localization of mammalian Gli proteins depends on both their N-terminal domains and a central region lying C-terminal to the zinc-finger DNA-binding domains. Invertebrate Gli homologs Ci and Tra1, when over-expressed in ciliated mouse fibroblasts, fail to localize to the cilia, suggesting the lack of a vertebrate-specific structural feature required for ciliary localization. We further show that activation of protein kinase A (PKA) efficiently inhibits ciliary localization of Gli2 and Gli3, but only moderately affects the ciliary localization of Gli1. Interestingly, variants of Gli2 mimicking the phosphorylated or non-phosphorylated states of Gli2 are both localized to the cilia, and their ciliary localizations are subjected to the inhibitory effect of PKA activation, suggesting a likely indirect mechanism underlying the roles of PKA in Gli ciliary localization. Finally, we show that ciliary localization of Sufu is dependent on ciliary-localized Gli proteins, and is inhibited by PKA activation, suggesting a coordinated mechanism for the ciliary translocation of Sufu and Gli proteins

    Increased Expression of Beta-Defensin 1 (DEFB1) in Chronic Obstructive Pulmonary Disease

    Get PDF
    On-going airway inflammation is characteristic for the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the key factors determining the decrease in lung function, an important clinical parameter of COPD, are not clear. Genome-wide linkage analyses provide evidence for significant linkage to airway obstruction susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Moreover, a genetic variation in the defensin beta 1 (DEFB1) gene was found to be associated with COPD. Therefore, we hypothesized that DEFB1 is differently regulated and expressed in human lungs during COPD progression. Gene expression of DEFB1 was assessed in bronchial epithelium and BAL fluid cells of healthy controls and patients with COPD and using bisulfite sequencing and ChIP analysis, the epigenetic control of DEFB1 mRNA expression was investigated. We can demonstrate that DEFB1 mRNA expression was significantly increased in bronchopulmonary specimen of patients with COPD (n = 34) vs. healthy controls (n = 10) (p<0.0001). Furthermore, a significant correlation could be detected between DEFB1 and functional parameters such as FEV1 (p = 0.0024) and the FEV1/VC ratio (p = 0.0005). Upregulation of DEFB1 mRNA was paralleled by changes in HDAC1-3, HDAC5 and HDAC8 mRNA expression. Whereas bisulfite sequencing revealed no differences in the methylation state of DEFB1 promoter between patients with COPD and controls, ChIP analysis showed that enhanced DEFB1 mRNA expression was associated with the establishment of an active histone code. Thus, expression of human DEFB1 is upregulated and related to the decrease in pulmonary function in patients with COPD

    The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication

    Get PDF
    The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism

    Focus on the research utility of intravascular ultrasound - comparison with other invasive modalities

    Get PDF
    Intravascular ultrasound (IVUS) is an invasive modality which provides cross-sectional images of a coronary artery. In these images both the lumen and outer vessel wall can be identified and accurate estimations of their dimensions and of the plaque burden can be obtained. In addition, further processing of the IVUS backscatter signal helps in the characterization of the type of the plaque and thus it has been used to study the natural history of the atherosclerotic evolution. On the other hand its indigenous limitations do not allow IVUS to assess accurately stent struts coverage, existence of thrombus or exact site of plaque rupture and to identify some of the features associated with increased plaque vulnerability. In order this information to be obtained, other modalities such as optical coherence tomography, angioscopy, near infrared spectroscopy and intravascular magnetic resonance imaging have either been utilized or are under evaluation. The aim of this review article is to present the current utilities of IVUS in research and to discuss its advantages and disadvantages over the other imaging techniques

    Cloud Computing As a Tool for Enhancing Ecological Goals?

    Get PDF
    Cloud computing has been introduced as a promising information technology (IT) that embodies not only economic advantages in terms of increased efficiency but also ecological gains through saving energy. The latter has become particularly important in view of the rising energy costs of IT. The present study analyzes whether necessary preconditions for accepting cloud computing as a new infrastructure, such as awareness and perceived net value, exist on the part of the users. The analysis is based on a combined research framework of the theory of reasoned action (TRA) and the technology acceptance model (TAM) in a cloud computing setting. Two consumer surveys, the one to elicit beliefs and the second to gain insight into the ranking of the variables, are employed. This study uses structural equation modeling (SEM) to evaluate the hypotheses. The results indicate support for the proposed research framework. Surprisingly however, the ecological factor does not play a role in forming cloud computing intentions, regardless of prior knowledge or experience. Empirical evidence of this study suggests increasing efforts for informing actual and potential users, particularly in respect to possible ecological advantages through applying the new IT infrastructure
    corecore