3,899 research outputs found

    Region of the anomalous compression under Bondi-Hoyle accretion

    Full text link
    We investigate the properties of an axisymmetric non-magnetized gas flow without angular momentum on a small compact object, in particular, on a Schwarzschild black hole in the supersonic region near the object; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we see that the streamlines intersect (i.e., a caustic forms) on the symmetry axis at a certain distance rxr_x from the center on the front side if the pressure gradient is neglected. The characteristic radial size of the region, in which the streamlines emerging from the sonic surface at an angle no larger than θ0\theta_0 to the axis intersect, is Δr=rxθ02/3.\Delta r= r_x\theta^2_0/3. To refine the flow structure in this region, we numerically compute the system in the adiabatic approximation without ignoring the pressure. We estimate the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.Comment: 10 pages, 2 figure

    Algorithmic construction of static perfect fluid spheres

    Full text link
    Perfect fluid spheres, both Newtonian and relativistic, have attracted considerable attention as the first step in developing realistic stellar models (or models for fluid planets). Whereas there have been some early hints on how one might find general solutions to the perfect fluid constraint in the absence of a specific equation of state, explicit and fully general solutions of the perfect fluid constraint have only very recently been developed. In this article we present a version of Lake's algorithm [Phys. Rev. D 67 (2003) 104015; gr-qc/0209104] wherein: (1) we re-cast the algorithm in terms of variables with a clear physical meaning -- the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulae for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of inter-relationships among many of the previously known exact solutions, and generate several new exact solutions.Comment: Uses revtex4. V2: Minor clarifications, plus an additional section on how to turn the algorithm into a solution generalization technique. This version accepted for publication in Physical Review D. Now 7 page

    Hairy Black Holes and Null Circular Geodesics

    Full text link
    Einstein-matter theories in which hairy black-hole configurations have been found are studied. We prove that the nontrivial behavior of the hair must extend beyond the null circular orbit (the photonsphere) of the corresponding spacetime. We further conjecture that the region above the photonsphere contains at least 50% of the total hair's mass. We support this conjecture with analytical and numerical results.Comment: 5 page

    Advection-Dominated Accretion with Infall and Outflows

    Full text link
    We present self-similar solutions for advection-dominated accretion flows with radial viscous force in the presence of outflows from the accretion flow or infall. The axisymmetric flow is treated in variables integrated over polar sections and the effects of infall and outflows on the accretion flow are parametrised for possible configurations compatible with the self-similar solution. We investigate the resulting accretion flows for three different viscosity laws and derive upper limits on the viscosity parameter alpha. In addition, we find a natural connection to non-rotating and spherical accretion with turbulent viscosity, which is assumed to persist even without differential rotation. Positive Bernoulli numbers for advection-dominated accretion allow a fraction of the gas to be expelled in an outflow and the upper limit on the viscosity predicts that outflows are inevitable for equations of state close to an ideal gas.Comment: 17 pages, 9 figures, accepted for publication in the Astrophysical Journa

    Is There a Relationship between the Density of Primordial Black Holes in a Galaxy and the Rate of Cosmological Gamma-Ray Bursts?

    Full text link
    The rate of accretion of matter from a solar-type star onto a primordial black hole (PBH) that passes through it is calculated. The probability that a PBH is captured into an orbit around a star in a galaxy is found. The mean lifetime of the PBH in such an orbit and the rate of orbital captures of PBHs in the galaxy are calculated. It is shown that this rate does not depend on the mass of the PBH. This mechanism cannot make an appreciable contribution to the rate of observed gamma-ray bursts. The density of PBHs in the galaxy can reach a critical value - the density of the mass of dark matter in the galaxy.Comment: 7 page

    Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star

    Full text link
    We consider two types of mechanical coupling between the crust and the core of a precessing neutron star. First, we find that a hydromagnetic (MHD) coupling between the crust and the core strongly modifies the star's precessional modes when ta(Ts×Tp)1/2t_a\le\sim (T_s\times T_p)^{1/2}; here tat_a is the Alfven crossing timescale, and TsT_s and TpT_p are the star's spin and precession periods, respectively. We argue that in a precessing pulsar PSR B1828-11 the restoring MHD stress prevents a free wobble of the crust relative to the non-precessing core. Instead, the crust and the proton-electron plasma in the core must precess in unison, and their combined ellipticity determines the period of precession. Link has recently shown that the neutron superfluid vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has also argued that this lack of pinning is expected if the proton Fermi liquid in the core is type-I superconductor. In this case, the neutron superfluid is dynamically decoupled from the precessing motion. The pulsar's precession decays due to the mutual friction between the neutron superfluid and the plasma in the core. The decay is expected to occur over tens to hundreds of precession periods and may be measurable over a human lifetime. Such a measurement would provide information about the strong n-p interaction in the neutron-star core. Second, we consider the effect of gravitomagnetic coupling between the neutron superfluid in the core and the rest of the star and show that this coupling changes the rate of precession by about 10%. The general formalism developed in this paper may be useful for other applications.Comment: 6 page

    Topological Quintessence

    Full text link
    A global monopole (or other topological defect) formed during a recent phase transition with core size comparable to the present Hubble scale, could induce the observed accelerating expansion of the universe. In such a model, topological considerations trap the scalar field close to a local maximum of its potential in a cosmologically large region of space. We perform detailed numerical simulations of such an inhomogeneous dark energy system (topological quintessence) minimally coupled to gravity, in a flat background of initially homogeneous matter. We find that when the energy density of the field in the monopole core starts dominating the background density, the spacetime in the core starts to accelerate its expansion in accordance to a \Lambda CDM model with an effective inhomogeneous spherical dark energy density parameter \Omega_\Lambda(r). The matter density profile is found to respond to the global monopole profile via an anti-correlation (matter underdensity in the monopole core). Away from the monopole core, the spacetime is effectively Einstein-deSitter (\Omega_\Lambda(r_{out}) -> 0) while at the center \Omega_\Lambda(r ~ 0) is maximum. We fit the numerically obtained expansion rate at the monopole core to the Union2 data and show that the quality of fit is almost identical to that of \Lambda CDM. Finally, we discuss potential observational signatures of this class of inhomogeneous dark energy models.Comment: Accepted in Phys. Rev. D (to appear). Added observational bounds on parameters. 10 pages (two column revtex), 6 figures. The Mathematica files used to produce the figures of this study may be downloaded from http://leandros.physics.uoi.gr/topquin

    Very Old Isolated Compact Objects as Dark Matter Probes

    Full text link
    Very old isolated neutron stars and white dwarfs have been suggested to be probes of dark matter. To play such a role, two requests should be fulfilled, i.e., the annihilation luminosity of the captured dark matter particles is above the thermal emission of the cooling compact objects (request-I) and also dominate over the energy output due to the accretion of normal matter onto the compact objects (request-II). Request-I calls for very dense dark matter medium and the critical density sensitively depends on the residual surface temperature of the very old compact objects. The accretion of interstellar/intracluster medium onto the compact objects is governed by the physical properties of the medium and by the magnetization and rotation of the stars and may outshine the signal of dark matter annihilation. Only in a few specific scenarios both requests are satisfied and the compact objects are dark matter burners. The observational challenges are discussed and a possible way to identify the dark matter burners is outlined.Comment: 9 pages including 1 Figure, to appear in Phys. Rev.

    Gravitational radiation from dynamical black holes

    Full text link
    An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.Comment: 5 revtex4 pages. Additional comment

    Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney

    Full text link
    A recent criticism of cosmological methodology and achievements by Disney (2000) is assessed. Some historical and epistemological fallacies in the said article have been highlighted. It is shown that---both empirically and epistemologically---modern cosmology lies on sounder foundations than it is portrayed. A brief historical account demonstrates that this form of unsatisfaction with cosmology has had a long tradition, and rather meagre results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel. Grav., accepted for publicatio
    corecore