374 research outputs found

    Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2

    Full text link
    The local structure of the AgPbmSbTem+2 series of thermoelectric materials has been studied using the atomic pair distribution function (PDF) method. Three candidate-models were attempted for the structure of this class of materials using either a one-phase or a two-phase modeling procedure. Combining modeling the PDF with HRTEM data we show that AgPbmSbTem+2 contains nanoscale inclusions with composition close to AgPb3SbTe5 randomly embedded in a PbTe matrix.Comment: 7 pages, 5 figures, 2 tables, submitted to PR

    Strain, nano-phase separation, multi-scale structures and function of advanced materials

    Full text link
    Recent atomic pair distribution function results from our group from manganites and cuprate systems are reviewed in light of the presence of multi-scale structures. These structures have a profound effect on the material propertiesComment: 17 pages, 7 figures, 41 references, ICTP02 conference, to be published by World Scientifi

    Structural compliance, misfit strain and stripe nanostructures in cuprate superconductors

    Full text link
    Structural compliance is the ability of a crystal structure to accommodate variations in local atomic bond-lengths without incurring large strain energies. We show that the structural compliance of cuprates is relatively small, so that short, highly doped, Cu-O-Cu bonds in stripes are subject to a tensile misfit strain. We develop a model to describe the effect of misfit strain on charge ordering in the copper oxygen planes of oxide materials and illustrate some of the low energy stripe nanostructures that can result.Comment: 4 pages 5 figure

    Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3

    Get PDF
    A study of the local atomic structure of the promising thermoelectric material beta-Zn4Sb3, using atomic pair distribution function (PDF) analysis of x-ray- and neutron-diffraction data, suggests that the material is nanostructured. The local structure of the beta phase closely resembles that of the low-temperature alpha phase. The alpha structure contains ordered zinc interstitial atoms which are not long range ordered in the beta phase. A rough estimate of the domain size from a visual inspection of the PDF is <~10 nm. It is probable that the nanoscale domains found in this study play an important role in the exceptionally low thermal conductivity of beta-Zn4Sb3
    • …
    corecore