767 research outputs found

    Compactification, Vacuum Energy and Quintessence

    Get PDF
    We study the possibility that the vacuum energy density of scalar and internal-space gauge fields arising from the process of dimensional reduction of higher dimensional gravity theories plays the role of quintessence. We show that, for the multidimensional Einstein-Yang-Mills system compactified on a R×S3×SdR \times S^3 \times S^d topology, there are classically stable solutions such that the observed accelerated expansion of the Universe at present can be accounted for without upsetting structure formation scenarios or violating observational bounds on the vacuum energy density.Comment: 15 pages, Latex, Third Award in 1999 Essay Competition of the Gravity Research Foundatio

    Dark matter as a dynamic effect due to a non-minimal gravitational coupling with matter

    Full text link
    In this work the phenomenology of models possessing a non-minimal coupling between matter and geometry is discussed, with a particular focus on the possibility of describing the flattening of the galactic rotation curves as a dynamically generated effect derived from this modification to General Relativity. Two possibilities are discussed: firstly, that the observed discrepancy between the measured rotation velocity and the classical prediction is due to a deviation from geodesic motion, due to a non-(covariant) conservation of the energy-momentum tensor; secondly, that even if the principle of energy conservation holds, the dynamical effects arising due to the non-trivial terms in the Einstein equations of motion can give rise to an extra density contribution that may be interpreted as dark matter. The mechanism of the latter alternative is detailed, and a numerical session ascertaining the order of magnitude of the relevant parameters is undertaken, with possible cosmological implications discussed.Comment: Talk given at First Mediterranean Conference on Classical and Quantum Gravity, Kolymbari, Greece, 14-18 September 2009

    Palatini formulation of modified gravity with a nonminimal curvature-matter coupling

    Get PDF
    We derive the field equations and the equations of motion for massive test particles in modified theories of gravity with an arbitrary coupling between geometry and matter by using the Palatini formalism. We show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, matter Lagrangian dependent metric, which is related with the physical metric by means of a conformal transformation. Similarly to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We derive the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra-force is obtained in terms of the matter-geometry coupling functions and of their derivatives. Generally, the motion is non-geodesic, and the extra force is orthogonal to the four-velocity.Comment: 7 pages, no figures; v2, revised and corrected version; new Section adde

    A Curvature Principle for the interaction between universes

    Full text link
    We propose a Curvature Principle to describe the dynamics of interacting universes in a multi-universe scenario and show, in the context of a simplified model, how interaction drives the cosmological constant of one of the universes toward a vanishingly small value. We also conjecture on how the proposed Curvature Principle suggests a solution for the entropy paradox of a universe where the cosmological constant vanishes.Comment: Essay selected for an honorable mention by the Gravity Research Foundation, 2007. Plain latex, 8 page

    Noncommutative effects in astrophysical objects: a survey

    Full text link
    The main implications of noncommutativity over astrophysical objects are examined. Noncommutativity is introduced through a deformed dispersion relation E2=p2c2(1+λE)2+m2c4E^{2}=p^{2}c^{2}(1+\lambda E)^{2} + m^{2}c^{4} and the relevant thermodynamical quantities are calculated using the grand canonical ensemble formalism. These results are applied to simple physical models describing main-sequence stars, white-dwarfs and neutron stars. The stability of main-sequence stars and white dwarfs is discussed.Comment: 10 pages. Talk presented by C. Z. at the "First Mediterranean Conference on Classical and Quantum Gravity", Kolymbari (Crete, Greece), September 14-18, 2009. To appear in the Proceeding

    Mass varying dark matter in effective GCG scenarios

    Full text link
    A unified treatment of mass varying dark matter coupled to cosmon-{\em like} dark energy is shown to result in {\em effective} generalized Chaplygin gas (GCG) scenarios. The mass varying mechanism is treated as a cosmon field inherent effect. Coupling dark matter with dark energy allows for reproducing the conditions for the present cosmic acceleration and for recovering the stability resulted from a positive squared speed of sound c_{s}^{\2}, as in the GCG scenario. The scalar field mediates the nontrivial coupling between the dark matter sector and the sector responsible for the accelerated expansion of the universe. The equation of state of perturbations is the same as that of the background cosmology so that all the effective results from the GCG paradigm are maintained. Our results suggest the mass varying mechanism, when obtained from an exactly soluble field theory, as the right responsible for the stability issue and for the cosmic acceleration of the universe.Comment: 17 pages, 3 figure

    Gravitational waves in theories with a non-minimal curvature-matter coupling

    Full text link
    Gravitational waves in the presence of a non-minimal curvature-matter coupling are analysed, both in the Newman-Penrose and perturbation theory formalisms. Considering a cosmological constant as a source, the non-minimally coupled matter-curvature model reduces to f(R)f(R) theories. This is in good agreement with the most recent data. Furthermore, a dark energy-like fluid is briefly considered, where the propagation equation for the tensor modes differs from the previous scenario, in that the scalar mode equation has an extra term, which can be interpreted as the longitudinal mode being the result of the mixture of two fundamental excitations δR\delta R and δρ\delta \rho.Comment: 9 pages. Version published at Eur. Phys. J.

    Unparticle inspired corrections to the Gravitational Quantum Well

    Full text link
    We consider unparticle inspired corrections of the type (RGr)β{(\frac{R_{G}}{r})}^\beta to the Newtonian potential in the context of the gravitational quantum well. The new energy spectrum is computed and bounds on the parameters of these corrections are obtained from the knowledge of the energy eigenvalues of the gravitational quantum well as measured by the GRANIT experiment.Comment: Revtex4 file, 4 pages, 2 figures and 1 table. Version to match the one published at Physical Review
    corecore