2,209 research outputs found

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    An Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    Full text link
    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence

    Photometric variability of the LAMOST sample of magnetic chemically peculiar stars as seen by TESS

    Full text link
    High-quality light curves from space missions have opened up a new window on the rotational and pulsational properties of magnetic chemically peculiar (mCP) stars and have fuelled asteroseismic studies. They allow the internal effects of surface magnetic fields to be probed and numerous astrophysical parameters to be derived with great precision. We present an investigation of the photometric variability of a sample of 1002 mCP stars discovered in the LAMOST archival spectra with the aims of measuring their rotational periods and identifying interesting objects for follow-up studies. TESS photometry was available for 782 mCP stars and was analysed using a Fourier two-term frequency fit to determine the stars' rotational periods. The rotational signal was then subtracted from the light curve to identify non-rotational variability. A pixel-level blending analysis was performed to check whether the variability originates in the target star or a nearby blended neighbour. We investigated correlations between the rotational periods, fractional age on the main sequence, mass, and several other observables. We present rotational periods and period estimates for 720 mCP stars. In addition, we identified four eclipsing binary systems that likely host an mCP star, as well as 25 stars with additional signals consistent with pulsation (12 stars with frequencies above 10 d1^{-1} and 13 stars with frequencies below 10 1^{-1}). We find that more evolved stars have longer rotation periods, in agreement with the assumption of the conservation of angular momentum during main-sequence evolution. With our work, we increase the sample size of mCP stars with known rotation periods and identify prime candidates for detailed follow-up studies. This enables two paths towards future investigations: population studies of even larger samples of mCP stars and the detailed characterisation of high-value targets.Comment: 30 pages, 9 figures, 1 table. Accepted for publication in the Journal of Astronomy and Astrophysics (A&A

    Extreme mass ratios and fast rotation in three massive binaries

    Full text link
    The origin of rapid rotation in massive stars remains debated, although binary interactions are now often advocated as a cause. However, the broad and shallow lines in the spectra of fast rotators make direct detection of binarity difficult. In this paper, we report on the discovery and analysis of multiplicity for three fast-rotating massive stars: HD25631 (B3V), HD191495 (B0V), and HD46485 (O7V). They display strikingly similar TESS light curves, with two narrow eclipses superimposed on a sinusoidal variation due to reflection effects. We complement these photometric data by spectroscopy from various instruments (X-Shooter, Espadons, FUSE...), to further constrain the nature of these systems. The detailed analyses of these data demonstrates that the companions of the massive OB stars have low masses (~1Msol) with rather large radii (2-4 Rsol) and low temperatures (<15 kK). These companions display no UV signature, which would exclude a hot subdwarf nature, but disentangling of the large set of X-Shooter spectra of HD25631 revealed the typical signature of chromospheric activity in the companion's spectrum. In addition, despite the short orbital periods (P=3-7d), the fast-rotating OB-stars still display non-synchronized rotation and all systems appear young (<20Myr). This suggests that, as in a few other cases, these massive stars are paired in those systems with non-degenerate, low-mass PMS companions, implying that fast rotation would not be a consequence of a past binary interactions in their case.Comment: accepted for publication by MNRA
    corecore