81 research outputs found
NMDA Receptor Phosphorylation at a Site Affected in Schizophrenia Controls Synaptic and Behavioral Plasticity
Phosphorylation of the NR1 subunit of NMDA receptors (NMDARs) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions, we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation. Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders
On possible reasons of positive near-anode voltage drop in high-current vacuum arc
In this paper we consider some reasons for the occurrence of a positive near-anode potential drop during current constriction in high-current vacuum arc. It is shown that if the radius of constriction is much larger than the electron mean free path, then a positive voltage drop in the near-anode plasma sheath does not occur, but an additional drop may occur in the near-anode plasma layer due to the anomalous resistance. If the current constriction radius is much less than the electron mean free path, then a positive voltage drop in the sheath arises under the usual condition, and the kinetic instabilities in the near-anode plasma do not develop. © 2019 IOP Publishing Ltd. All rights reserved.Russian Foundation for Basic Research, RFBR: 17-02-00346, 18-08-00547Russian Academy of Sciences, RASNational Natural Science Foundation of China, NSFC: 5191153011318-2-2-16This work was supported in part by RFBR(grant Nos. 17-02-00346, 18-08-00547, 19-08-00783, 19-58-53006), by RAS Program (project No. 11) and UB RAS Program (project No. 18-2-2-16), as well as by National Natural Science Foundation of China (project No. 51911530113)
OGTT Glucose Response Curves, Insulin Sensitivity, and β-Cell Function in RISE: Comparison Between Youth and Adults at Randomization and in Response to Interventions to Preserve β-Cell Function
We examined the glucose response curves (biphasic [BPh], monophasic [MPh], incessant increase [IIn]) during an oral glucose tolerance test (OGTT) and their relationship to insulin sensitivity (IS) and β-cell function (βCF) in youth versus adults with impaired glucose tolerance or recently diagnosed type 2 diabetes. RESEARCH DESIGN AND METHODS: This was both a cross-sectional and a longitudinal evaluation of participants in the RISE study randomized to metformin alone for 12 months or glargine for 3 months followed by metformin for 9 months. At baseline/randomization, OGTTs (85 youth, 353 adults) were categorized as BPh, MPh, or IIn. The relationship of the glucose response curves to hyperglycemic clamp-measured IS and βCF at baseline and the change in glucose response curves 12 months after randomization were assessed. RESULTS: At randomization, the prevalence of the BPh curve was significantly higher in youth than adults (18.8% vs. 8.2%), with no differences in MPh or IIn. IS did not differ across glucose response curves in youth or adults. However, irrespective of curve type, youth had lower IS than adults (P < 0.05). βCF was lowest in IIn versus MPh and BPh in youth and adults (P < 0.05), yet compared with adults, youth had higher βCF in BPh and MPh (P < 0.005) but not IIn. At month 12, the change in glucose response curves did not differ between youth and adults, and there was no treatment effect. CONCLUSIONS: Despite a twofold higher prevalence of the more favorable BPh curve in youth at randomization, RISE interventions did not result in beneficial changes in glucose response curves in youth compared with adults. Moreover, the typical β-cell hypersecretion in youth was not present in the IIn curve, emphasizing the severity of β-cell dysfunction in youth with this least favorable glucose response curve
Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice
Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis
Recommended from our members
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition
of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term ‘prebiotic’ by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation
- …