7 research outputs found

    Rapid plant regeneration and analysis of genetic fidelity of in vitro derived plants of Chlorophytum arundinaceum Baker—an endangered medicinal herb

    No full text
    An efficient in vitro multiplication system via multiple shoot bud induction and regeneration has been developed in Chlorophytum arundinaceum using shoot crown explants. Optimum regeneration frequency (87%) and desirable organogenetic response in the form of de novo organized multiple shoot buds without an intervening callus phase was obtained on Murashige and Skoog's (MS) minimal organics medium containing 3% sucrose (w/v) supplemented with 4 x 10(-6) M Kn and 2 x 10(-6) MIBA. Axenic secondary explants with multiple shoot buds on subculturing elicited best response with 1 x 10(-5) M Kinetin (Kn) and 5 x 10(-6) M indole-3-butyric acid (IBA) giving rise to an average of 18.74 shoots per culture with mean shoot length of 7.6 cm +/- 1.73. Varying molar ratios of either Kn/IBA or Kn/NAA revealed statistically significant differences in the regeneration frequencies among the phytohormone treatments. It was observed that the shoot bud differentiation and regeneration was influenced by the molar ratios of cytokinins/auxin rather than their relative concentrations. Healthy regenerated shoots were rooted in half strength MS basal medium containing 3% sucrose (w/v) supplemented with 5 x 10(-6) M IBA. Following simple hardening procedures, rooted plantlets, were transferred to soil-sand (1:1; v/v) with more than 90% success. Genetic fidelity was assessed using random amplified polymorphic DNA (RAPD), karyotype analysis and meiotic behaviour of in vitro and in vivo plants. Five arbitrary decamers displayed same banding profile within all the micropropagated plants and in vivo explant donor. The cytological and molecular analysis complemented and compared well and showed no genomic alterations in the plants regenerated through shoot bud differentiation. High multiplication frequency, molecular, cytological and phenotypic stability ensures the efficacy of the protocol developed for the production and conservation of this important endangered medicinal herb

    Comparative analysis of genetic diversity using molecular and morphometric markers in Andrographis paniculata (Burm. f.) Nees

    No full text
    Andrographis paniculata is a medicinal plant of immense therapeutic value. The present study was aimed to elucidate its genetic diversity based on morphochemical and RAPD markers from 53 accessions belonging to 5 ecogeographic regions. Analysis of variance and D2 statistics revealed significant differences in all the metric traits and sufficient inter-cluster distances indicating considerable diversity among the accessions. The complementary approach of RAPD was used to evaluate the genetic dissimilarities among all the accessions using 6 highly polymorphic primers. The average proportion of polymorphic loci across primers was 96.28%. The molecular genetic diversity based on Shannon index per primer averaged 5.585 with values ranging from 3.08 to 8.70 indicating towards wide genetic base. RAPD based UPGMA and D2 cluster analysis also revealed that various accessions available in different eco-geographic regions might have originated from native places of wild abundance. Similarity matrices were generated for molecular markers and morphometric data to determine the degree of congruence between the two. A highly significant but low correlation(r = 0.547, P < 0.001) was obtained thus implying the correspondence between the two. The species is hermaphroditic and a habitual inbreeder. The present study yielded a typical triangular congruence between its breeding system, morphometric traits and RAPD markers thus elucidating the usefulness of complementary approaches to make diversity analysis more explanatory and purposeful for optimum genetic amelioration and effective conservation of its genotypic variability
    corecore