25 research outputs found

    On Necessary and Sufficient Conditions for Near-Optimal Singular Stochastic Controls

    Full text link
    This paper is concerned with necessary and sufficient conditions for near-optimal singular stochastic controls for systems driven by a nonlinear stochastic differential equations (SDEs in short). The proof of our result is based on Ekeland's variational principle and some delicate estimates of the state and adjoint processes. This result is a generalization of Zhou's stochastic maximum principle for near-optimality to singular control problem.Comment: 19 pages, submitted to journa

    Adaptive importance sampling with forward-backward stochastic differential equations

    Get PDF
    We describe an adaptive importance sampling algorithm for rare events that is based on a dual stochastic control formulation of a path sampling problem. Specifically, we focus on path functionals that have the form of cumulate generating functions, which appear relevant in the context of, e.g.~molecular dynamics, and we discuss the construction of an optimal (i.e. minimum variance) change of measure by solving a stochastic control problem. We show that the associated semi-linear dynamic programming equations admit an equivalent formulation as a system of uncoupled forward-backward stochastic differential equations that can be solved efficiently by a least squares Monte Carlo algorithm. We illustrate the approach with a suitable numerical example and discuss the extension of the algorithm to high-dimensional systems
    corecore