8 research outputs found
White matter alterations related to attention-deficit hyperactivity disorder and COMT val158met polymorphism: Children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus)
Introduction: In this article, the COMT gene val158met polymorphism and attention-deficit hyperactivity disorder (ADHD)-related differences in diffusion-tensor-imaging-measured white matter (WM) structure in children with ADHD and controls were investigated. Patients and methods: A total of 71 children diagnosed with ADHD and 24 controls aged 8–15 years were recruited. Using diffusion tensor imaging, COMT polymorphism and ADHD-related WM alterations were investigated, and any interaction effect between the COMT polymorphism and ADHD was also examined. The effects of age, sex, and estimated total IQ were controlled by multivariate analysis of covariance (MANCOVA). Results: First, an interaction between the COMT val158met polymorphism and ADHD in the right (R) cingulum (cingulate gyrus) (CGC) was found. According to this, valine (val) homozygote ADHD-diagnosed children had significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the R-CGC than ADHD-diagnosed methionine (met) carriers, and val homozygote controls had higher FA and lower RD in the R-CGC than val homozygote ADHD patients. Second, met carriers had higher FA and axial diffusivity in the left (L)-uncinate fasciculus and lower RD in the L-posterior corona radiata and L-posterior thalamic radiation (include optic radiation) than the val homozygotes, independent of ADHD diagnosis. Third, children with ADHD had lower FA in the L-CGC and R-retrolenticular part of the internal capsule than the controls, independent of the COMT polymorphism. Conclusion: Significant differences reported here may be evidence that the COMT gene val158met polymorphism variants, as well as ADHD, could affect brain development. ADHD and the COMT polymorphism might be interactively affecting WM development in the R-CGC to alter the WM connectivity in children with val homozygote ADHD. © 2016 Kabukcu Basay et al
Screen use habits among children and adolescents with psychiatric disorders: A cross-sectional study from Turkey
In this cross-sectional study, we investigated screen use habits, problematic internet use (PIU), and screen-psychopathology relationship in a clinical sample of children and adolescents. The study included 277 children and adolescents (129 [46.4%] girls) aged between 6-17 years referred to a psychiatry outpatient setting for various reasons. All parents completed the Strengths and Difficulties Questionnaire (SDQ), while adolescents also completed the Internet Addiction Test (IAT). The mean screen time was 3.85 (SD = 2.72) hours per day. Longer screen times were found among children and adolescents with specific psychiatric disorders compared to those with no psychiatric symptoms; especially among those with internalizing disorders (i.e., an anxiety disorder and/or depression), but also with attention deficit/hyperactivity disorder and/or conduct disorder. Longer screen time may be related with more functioning impairments. Based on the IAT, 2.1% of adolescents may have PIU. The findings from this study suggest that children and adolescents with psychiatric symptoms may have prolonged screen times. This needs to be taken into account during diagnostic and therapeutic procedures. © 2020 by authors
Public Health Rep
19314755PMCnul
The impact of synapsin III gene on the neurometabolite level alterations after single-dose methylphenidate in attention-deficit hyperactivity disorder patients
Ömer Başay,1 Burge Kabukcu Basay,1 Huseyin Alacam,2 Onder Ozturk,1 Ahmet Buber,1 Senay Gorucu Yilmaz,3 Yılmaz Kıroğlu,4 Mehmet Emin Erdal,5 Hasan Herken2 1Department of Child and Adolescent Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, 2Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, 3Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, 4Department of Radiology, School of Medicine, Pamukkale University, Denizli, 5Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey Objective: To investigate the neurometabolite level changes according to synapsin III gene rs133945G>A and rs133946C>G polymorphisms by using magnetic resonance spectroscopy (MRS) in patients with attention-deficit hyperactivity disorder (ADHD).Methods: Fifty-seven adults diagnosed with ADHD were recruited for the study. The participants were examined by single-voxel 1H MRS when medication naïve and 30 minutes after oral administration of 10 mg methylphenidate (Mph). Those who had been on a stimulant discontinued the medication 48 hours before MRS imaging. Spectra were taken from the anterior cingulate cortex, dorsolateral prefrontal cortex, striatum, and cerebellum, and N-acetylaspartate (NAA), choline, and creatine levels were examined. For genotyping of the synapsin III gene polymorphisms, DNA was isolated from peripheral blood leukocytes. The effects of age, sex, and ADHD subtypes were controlled in the analyses.Results: After a single dose of Mph, choline levels increased significantly in the striatum of rs133945G>A polymorphism-GG genotypes (P=0.020) and NAA levels rose in the anterior cingulate cortex of rs133946C>G polymorphism-CG genotypes (P=0.014). Both rs133945G>A and rs133946C>G polymorphisms were found to statistically significantly affect the alteration of NAA levels in response to Mph in dorsolateral prefrontal cortex with two-way repeated measure of analysis of variance. Post hoc comparisons revealed a significant difference between CG and GG genotypes of rs133946C>G polymorphisms after Bonferroni adjustment (P=0.016).Conclusion: Synapsin III gene polymorphisms may be affecting the changes in neurometabolite levels in response to Mph in adult ADHD patients. Future studies are needed to confirm our findings. Keywords: adult ADHD, magnetic resonance spectroscopy, N-acetylaspartate, genotyp