6,081 research outputs found
Resolving the Axial Mass Anomaly in neutrino Scattering
We present a parametrization of the observed enhancement in the transverse
electron quasielastic (QE) response function for nucleons bound in carbon as a
function of the square of the four momentum transfer (Q2) in terms of a
correction to the magnetic form factors of bound nucleons. The parametrization
should also be applicable to the transverse cross section in neutrino
scattering. If the transverse enhancement originates from meson exchange
currents (MEC), then it is theoretically expected that any enhancement in the
longitudinal or axial contributions is small. We present the predictions of the
"Transverse Enhancement" model (which is based on electron scattering data
only) for the neutrino and anti-neutrino differential and total QE cross
sections for nucleons bound in carbon. The 2Q2 dependence of the transverse
enhancement is observed to resolve much of the long standing discrepancy
("Axial Mass Anomaly}) in the QE total cross sections and differential
distributions between low energy and high energy neutrino experiments on
nuclear targets.Comment: 3 pages, 3 Figures, Presented by Arie Bodek at the 19th Particles and
Nuclei International Conference, PANIC 2011, MIT, Cambridge, MA July 201
Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization
We present new parameterizations of vector and axial nucleon form factors. We
maintain an excellent descriptions of the form factors at low momentum
transfers, where the spatial structure of the nucleon is important, and use the
Nachtman scaling variable xi to relate elastic and inelastic form factors and
impose quark-hadron duality constraints at high momentum transfers where the
quark structure dominates. We use the new vector form factors to re-extract
updated values of the axial form factor from neutrino experiments on deuterium.
We obtain an updated world average value from neutrino-d and pion
electroproduction experiments of M_A = 1.014 +- 0.014 GeV/c2. Our
parameterizations are useful in modeling neutrino interactions at low energies
(e.g. for neutrino oscillations experiments). The predictions for high momentum
transfers can be tested in the next generation electron and neutrino scattering
experiments.Comment: 5 pages, 3 figures, to be published in EPJ
Balancing Efficiency, Equity, and Voice in Workplace Resolution Procedures
Systems for resolving workplace disputes are very important to workers and firms, and have been the subject of much debate. In the United States, traditional unionized grievance procedures, emerging nonunion dispute resolution systems, and the court-based system for resolving employment law disputes have all been criticized. Much of the existing debate on workplace dispute resolution, however, has been atheoretical, with a focus on techniques of dispute resolution rather than the goals of the system. What is missing from the debate are fundamental standards for comparing and evaluating dispute resolutions systems. In this paper, we develop efficiency, equity, and voice as these standards. Unionized, nonunion, and employment law procedures are then evaluated against these three standards.
Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway
Construction of PVC Extrusions for the NOνA Near and Far Detectors
AbstractNOνA, or NuMIOff-Axis νe Appearance experiment, is a long-baseline neutrino experiment using an off-axis beam produced by the main injector (NuMI) neutrino beamline at Fermilab. The experiment is designed to study νμ to νe oscillations.It consistsoftwoPVCand liquid scintillator detectorsanda beamline upgrade. Thefar detector weighs 14 kton and will be located in Ash River, Minnesota, 810km from NuMI. The smaller, 220 ton near detector will be located underground at Fermi National Accelerator Laboratory. Each detector consists of planes of PVC extrusions containing liquid scintillator and wavelength shifting fiber. The PVC extrusions are made using a formula specially designed for high reflectivity, ease of extrusion and tensile qualities. Custom extrusion dies and extruding procedures havebeencreatedto ensureauniformproductthatholdstostrict dimensionalandmaterial tolerances.The construction of the NOνAnear detector on the surface (NDOS) extrusions will be presented, addressing the challenges of creating physics qualityPVCextrusionsandtheQA techniquesusedto ensurethat quality. Finally, preparationsfor construction of thefar detector willbe discussed
Ambiguities of neutrino(antineutrino) scattering on the nucleon due to the uncertainties of relevant strangeness form factors
Strange quark contributions to neutrino(antineutrino) scattering are
investigated on the nucleon level in the quasi-elastic region. The incident
energy range between 500 MeV and 1.0 GeV is used for the scattering. All of the
physical observable by the scattering are investigated within available
experimental and theoretical results for the strangeness form factors of the
nucleon. In specific, a newly combined data of parity violating electron
scattering and neutrino scattering is exploited. Feasible quantities to be
explored for the strangeness contents are discussed for the application to
neutrino-nucleus scattering.Comment: 17 pages, 7 figures, submit to J. Phys.
- …