12 research outputs found

    Photons in gapless color-flavor-locked quark matter

    Full text link
    We calculate the Debye and Meissner masses of a gauge boson in a material consisting of two species of massless fermions that form a condensate of Cooper pairs. We perform the calculation as a function of temperature, for the cases of neutral Cooper pairs and charged Cooper pairs, and for a range of parameters including gapped quaisparticles, and ungapped quasiparticles with both quadratic and linear dispersion relations at low energy. Our results are relevant to the behavior of photons and gluons in the gapless color-flavor-locked phase of quark matter. We find that the photon's Meissner mass vanishes, and the Debye mass shows a non-monotonic temperature dependence, and at temperatures of order the pairing gap it drops to a minimum value of order sqrt(alpha) times the quark chemical potential. We confirm previous claims that at zero temperature an imaginary Meissner mass can arise from a charged gapless condensate, and we find that at finite temperature this can also occur for a gapped condensate.Comment: 22 pages, LaTeX; expanded discussion of temperature dependenc

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    On the Low Surface Magnetic Field Structure of Quark Stars

    Full text link
    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.Comment: 24 pages REVTEX, one .eps figure, psfig.sty is include

    Neutron star matter in a modified PNJL model

    No full text
    We discuss a three-flavor Nambu-Jona-Lasinio model for the quark matter equation of state with scalar diquark interaction, isoscalar vector interaction and Kobayashi-Maskawa-t Hooft interaction. We adopt a phenomenological scheme to include possible effects of a change in the gluon pressure at finite baryon density by including a parametric dependence of the Polyakov-loop potential on the chemical potential. We discuss the results for the mass-radius relationships for hybrid neutron stars constructed on the basis of our model EoS in the context of the constraint from the recently measured mass of (1.97 +- 0.04) M (J ) for the pulsar PSR J1614-2230
    corecore