3,352 research outputs found
A (1,2) Heterotic String with Gauge Symmetry
We construct a (1,2) heterotic string with gauge symmetry and determine its
particle spectrum. This theory has a local N=1 worldsheet supersymmetry for
left movers and a local N=2 worldsheet supersymmetry for right movers and
describes particles in either two or three space-time dimensions. We show that
fermionizing the bosons of the compactified N=1 space leads to a particle
spectrum which has nonabelian gauge symmetry. The fermionic formulation of the
theory corresponds to a dimensional reduction of self dual Yang Mills. We also
give a worldsheet action for the theory and calculate the one-loop path
integral.Comment: 17 pages, added reference
Comments on black holes I: The possibility of complementarity
We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who
argue against black hole complementarity based on the claim that an infalling
observer 'burns' as he approaches the horizon. We show that in fact
measurements made by an infalling observer outside the horizon are
statistically identical for the cases of vacuum at the horizon and radiation
emerging from a stretched horizon. This forces us to follow the dynamics all
the way to the horizon, where we need to know the details of Planck scale
physics. We note that in string theory the fuzzball structure of microstates
does not give any place to 'continue through' this Planck regime. AMPS argue
that interactions near the horizon preclude traditional complementarity. But
the conjecture of 'fuzzball complementarity' works in the opposite way: the
infalling quantum is absorbed by the fuzzball surface, and it is the resulting
dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde
The information paradox: A pedagogical introduction
The black hole information paradox is a very poorly understood problem. It is
often believed that Hawking's argument is not precisely formulated, and a more
careful accounting of naturally occurring quantum corrections will allow the
radiation process to become unitary. We show that such is not the case, by
proving that small corrections to the leading order Hawking computation cannot
remove the entanglement between the radiation and the hole. We formulate
Hawking's argument as a `theorem': assuming `traditional' physics at the
horizon and usual assumptions of locality we will be forced into mixed states
or remnants. We also argue that one cannot explain away the problem by invoking
AdS/CFT duality. We conclude with recent results on the quantum physics of
black holes which show the the interior of black holes have a `fuzzball'
structure. This nontrivial structure of microstates resolves the information
paradox, and gives a qualitative picture of how classical intuition can break
down in black hole physics.Comment: 38 pages, 7 figures, Latex (Expanded form of lectures given at CERN
for the RTN Winter School, Feb 09), typo correcte
Non-radial oscillations in M-giant semi-regular variables: Stellar models and Kepler observations
The success of asteroseismology relies heavily on our ability to identify the
frequency patterns of stellar oscillation modes. For stars like the Sun this is
relatively easy because the mode frequencies follow a regular pattern described
by a well-founded asymptotic relation. When a solar like star evolves off the
main sequence and onto the red giant branch its structure changes dramatically
resulting in changes in the frequency pattern of the modes. We follow the
evolution of the adiabatic frequency pattern from the main sequence to near the
tip of the red giant branch for a series of models. We find a significant
departure from the asymptotic relation for the non-radial modes near the red
giant branch tip, resulting in a triplet frequency pattern. To support our
investigation we analyze almost four years of Kepler data of the most luminous
stars in the field (late K and early M type) and find that their frequency
spectra indeed show a triplet pattern dominated by dipole modes even for the
most luminous stars in our sample. Our identification explains previous results
from ground-based observations reporting fine structure in the Petersen diagram
and sub ridges in the period-luminosity diagram. Finally, we find `new ridges'
of non-radial modes with frequencies below the fundamental mode in our model
calculations, and we speculate they are related to f modes.Comment: 8 page, 5 figures, accepted by ApJL (ApJ, 788, L10
Chemical Stabilisation of Sand Part IX: Orthophthalate type Unsaturated Polyester Resin for Inducing Fast setting Behaviour and High Strength
Polymer concrete composites have been made from orthophthalate-type unsaturated polyester resin, methyl ethyl ketone peroxide as initiator, cobalt naphthenate as accelerator and desert sand as filler. Composites preferred using resin (10-25 per cent), initiator (4 per cent) and accelerator (2 per cent) with representative desert sand samples of different particle sizes (0.2-0.02 mm, 2-0.2 mm and 4-2 mm) as filler recorded unconfined compression strength ranging from 4 to 442 kg/cm/sup 2/ after curing at 50 degree centigrade in an oven for 0.5-24 h. Using coarse and fine sand samples with 10 and 15 per cent resin systems the maximum strength of 391 and 326 kg/cm/sup 2/ respectively was attained after 2 h of curing at 50 degree centigrade. The fast setting resin system with strength in this range is quite adequate for the construction of chemically stabilised surfaces, which withstand trafficability of vehicles, operation of helicopters and aircraft's requiring a maximum strength up to 275 kg/cm/sup 2/. These composites may prove useful for rapid repair of roads, helipads and runways damaged during operational activities. A mathematical model has been developed for predicting resin percentage needed for obtaining composite material of requisite strength. The observed and model predicted values have been found to show close agreement
Exploring the parent population of beamed NLS1s: from the black hole to the jet
The aim of this work is to understand the nature of the parent population of
beamed narrow-line Seyfert 1 galaxies (NLS1s), by studying the physical
properties of three parent candidates samples: steep-spectrum radio-loud NLS1s,
radio-quiet NLS1s and disk-hosted radio-galaxies. In particular, we focused on
the black hole mass and Eddington ratio distribution and on the interactions
between the jet and the narrow-line region.Comment: 6 pages, 2 figures, to appear in Proceedings of High Energy Phenomena
in Relativistic Outflows (HEPRO) V, Workshop Series of the Argentinian
Astronomical Societ
The propensity of molecules to spatially align in intense light fields
The propensity of molecules to spatially align along the polarization vector
of intense, pulsed light fields is related to readily-accessible parameters
(molecular polarizabilities, moment of inertia, peak intensity of the light and
its pulse duration). Predictions can now be made of which molecules can be
spatially aligned, and under what circumstances, upon irradiation by intense
light. Accounting for both enhanced ionization and hyperpolarizability, it is
shown that {\it all} molecules can be aligned, even those with the smallest
static polarizability, when subjected to the shortest available laser pulses
(of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR
- …