12,432 research outputs found

    Event-by-event fluctuations of the charged particle ratio from non-equilibrium transport theory

    Get PDF
    The event by event fluctuations of the ratio of positively to negatively charged hadrons are predicted within the UrQMD model. Corrections for finite acceptance and finite net charge are derived. These corrections are relevant to compare experimental data and transport model results to previous predictions. The calculated fluctuations at RHIC and SPS energies are shown to be compatible with a hadron gas. Thus, deviating by a factor of 3 from the predictions for a thermalized quark-gluon plasma.Comment: This paper clarifies the previous predictions of Jeon and Koch (hep-ph/0003168) and addresses issues raised in hep-ph/0006023. 2 Figures, 10pp, uses RevTe

    Multiplicity Fluctuations in Limited Segments of Momentum Space in Statistical Models

    Full text link
    Multiplicity fluctuations in limited segments of momentum space are calculated for a classical pion gas within the statistical model. Results for the grand canonical, canonical, and micro-canonical ensemble are obtained, compared and discussed. We demonstrate that even in the large volume limit correlations between macroscopic subsystems due to energy and momentum conservation persist. Based on the micro-canonical formulation we make qualitative predictions for the rapidity and transverse momentum dependence of multiplicity fluctuations. The resulting effects are of similar magnitude as the predicted enhancement due to a phase transition from a quark-gluon plasma to a hadron gas phase, or due to the critical point of strongly interacting matter, and qualitatively agree with recently published preliminary multiplicity fluctuation data of the NA49 SPS experiment.Comment: 23 pages, 4 figure

    Anomalous Multiplicity Fluctuations from Phase Transitions in Heavy Ion Collisions

    Full text link
    Event-by-event fluctuations and correlations between particles produced in relativistic nuclear collisions are studied. The fluctuations in positive, negative, total and net charge are closely related through correlations. In the event of a phase transitions to a quark-gluon plasma, fluctuations in total and net charge can be enhanced and reduced respectively which, however, is very sensitive to the acceptance and centrality. If the colliding system experiences strong density fluctuations due, e.g., to droplet formation in a first-order phase transition, all fluctuations can be enhanced substantially. The importance of fluctuations and correlations is exemplified by event-by-event measurement of the multiplicities of J/ΨJ/\Psi's and charged particles since these observables should anti-correlate in the presence of co-mover or anomalous absorption.Comment: revised version to appear in Phys. Rev. C, 5 page

    The Exchange Gate in Solid State Spin Quantum Computation: The Applicability of the Heisenberg Model

    Full text link
    Solid state quantum computing proposals rely on adiabatic operations of the exchange gate among localized spins in nanostructures. We study corrections to the Heisenberg interaction between lateral semiconductor quantum dots in an external magnetic field. Using exact diagonalization we obtain the regime of validity of the adiabatic approximation. We also find qualitative corrections to the Heisenberg model at high magnetic fields and in looped arrays of spins. Looped geometries of localized spins generate flux dependent, multi-spin terms which go beyond the basic Heisenberg model.Comment: 13 pages, 8 figure
    • …
    corecore