31,188 research outputs found
Recommended from our members
From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models
Modeling the effect of spatial variability of precipitation and basin characteristics on streamflow requires the use of distributed or semi-distributed hydrologic models. This paper addresses a DMIP 2 study that focuses on the advantages of using a semi-distributed modeling structure. We first present a revised semi-distributed structure of the NWS SACramento Soil Moisture Accounting (SAC-SMA) model that separates the routing of fast and slow response runoff components, and thus explicitly accounts for the differences between the two components. We then test four different calibration strategies that take advantage of the strengths of existing optimization algorithms (SCE-UA) and schemes (MACS). These strategies include: (1) lumped parameters and basin averaged precipitation, (2) semi-lumped parameters and distributed precipitation forcing, (3) semi-distributed parameters and distributed precipitation forcing and (4) lumped parameters and basin averaged precipitation, modified using a priori parameters of the SAC-SMA model. Finally, we explore the value of using discharge observations at interior points in model calibration by assessing gains/losses in hydrograph simulations at the basin outlet. Our investigation focuses on two key DMIP 2 science questions. Specifically, we investigate (a) the ability of the semi-distributed model structure to improve stream flow simulations at the basin outlet and (b) to provide reasonably good simulations at interior points.The semi-distributed model is calibrated for the Illinois River Basin at Siloam Springs, Arkansas using streamflow observations at the basin outlet only. The results indicate that lumped to distributed calibration strategies (1 and 4) both improve simulation at the outlet and provide meaningful streamflow predictions at interior points. In addition, the results of the complementary study, which uses interior points during the model calibration, suggest that model performance at the outlet can be further improved by using a semi-distributed structure calibrated at both interior points and the outlet, even when only a few years of historical record are available. © 2009 Elsevier B.V
Recommended from our members
Daytime precipitation estimation using bispectral cloud classification system
Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 μm) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04° × 0.04° latitudelongitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U.S. landmass east of 115°W. One reference infrared-only and three different bis-pectral (visible and infrared) rain estimation scenarios were compared to investigate the technique's ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04°, 0.08°, 0.12°, and 0.24° latitude-longitude) scales. Overall, the results using daytime data during June-August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04° resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24° resolution, the gains were 34% and 32% for the two performance measures, respectively. © 2010 American Meteorological Society
Improving Precipitation Estimation Using Convolutional Neural Network
Precipitation process is generally considered to be poorly represented in numerical weather/climate models. Statistical downscaling (SD) methods, which relate precipitation with model resolved dynamics, often provide more accurate precipitation estimates compared to model's raw precipitation products. We introduce the convolutional neural network model to foster this aspect of SD for daily precipitation prediction. Specifically, we restrict the predictors to the variables that are directly resolved by discretizing the atmospheric dynamics equations. In this sense, our model works as an alternative to the existing precipitation-related parameterization schemes for numerical precipitation estimation. We train the model to learn precipitation-related dynamical features from the surrounding dynamical fields by optimizing a hierarchical set of spatial convolution kernels. We test the model at 14 geogrid points across the contiguous United States. Results show that provided with enough data, precipitation estimates from the convolutional neural network model outperform the reanalysis precipitation products, as well as SD products using linear regression, nearest neighbor, random forest, or fully connected deep neural network. Evaluation for the test set suggests that the improvements can be seamlessly transferred to numerical weather modeling for improving precipitation prediction. Based on the default network, we examine the impact of the network architectures on model performance. Also, we offer simple visualization and analyzing approaches to interpret the models and their results. Our study contributes to the following two aspects: First, we offer a novel approach to enhance numerical precipitation estimation; second, the proposed model provides important implications for improving precipitation-related parameterization schemes using a data-driven approach
Volume Stabilization and the Origin of the Inflaton Shift Symmetry in String Theory
The main problem of inflation in string theory is finding the models with a
flat potential, consistent with stabilization of the volume of the compactified
space. This can be achieved in the theories where the potential has (an
approximate) shift symmetry in the inflaton direction. We will identify a class
of models where the shift symmetry uniquely follows from the underlying
mathematical structure of the theory. It is related to the symmetry properties
of the corresponding coset space and the period matrix of special geometry,
which shows how the gauge coupling depends on the volume and the position of
the branes. In particular, for type IIB string theory on K3xT^2/Z with D3 or D7
moduli belonging to vector multiplets, the shift symmetry is a part of
SO(2,2+n) symmetry of the coset space [SU(1,1)/ U(1)]x[SO(2,2+n)/(SO(2)x
SO(2+n)]. The absence of a prepotential, specific for the stringy version of
supergravity, plays a prominent role in this construction, which may provide a
viable mechanism for the accelerated expansion and inflation in the early
universe.Comment: 12 page
Recommended from our members
Evaluating the utility of multispectral information in delineating the areal extent of precipitation
Data from geosynchronous Earth-orbiting (GEO) satellites equipped with visible (VIS) and infrared (IR) scanners are commonly used in rain retrieval algorithms. These algorithms benefit from the high spatial and temporal resolution of GEO observations, either in stand-alone mode or in combination with higher-quality but less frequent microwave observations from low Earth-orbiting (LEO) satellites. In this paper, a neural network-based framework is presented to evaluate the utility of multispectral information in improving rain/no-rain (R/NR) detection. The algorithm uses the powerful classification features of the self-organizing feature map (SOFM), along with probability matching techniques to map single- or multispectral input space into R/NR maps. The framework was tested and validated using the 31 possible combinations of the five Geostationary Operational Environmental Satellite 12 (GOES-12) channels. An algorithm training and validation study was conducted over the conterminous United States during June-August 2006. The results indicate that during daytime, the visible channel (0.65 μm) can yield significant improvements in R/NR detection capabilities, especially when combined with any of the other four GOES-12 channels. Similarly, for nighttime detection the combination of two IR channels - particularly channels 3 (6.5 μm) and 4 (10.7 μm)-resulted in significant performance gain over any single IR channel. In both cases, however, using more than two channels resulted only in marginal improvements over two-channel combinations. Detailed examination of event-based images indicate that the proposed algorithm is capable of extracting information useful to screen no-rain pixels associated with cold, thin clouds and identifying rain areas under warm but rainy clouds. Both cases have been problematic areas for IR-only algorithms. © 2009 American Meteorological Society
Recommended from our members
Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling
Clustering in Hilbert space of a quantum optimization problem
The solution space of many classical optimization problems breaks up into
clusters which are extensively distant from one another in the Hamming metric.
Here, we show that an analogous quantum clustering phenomenon takes place in
the ground state subspace of a certain quantum optimization problem. This
involves extending the notion of clustering to Hilbert space, where the
classical Hamming distance is not immediately useful. Quantum clusters
correspond to macroscopically distinct subspaces of the full quantum ground
state space which grow with the system size. We explicitly demonstrate that
such clusters arise in the solution space of random quantum satisfiability
(3-QSAT) at its satisfiability transition. We estimate both the number of these
clusters and their internal entropy. The former are given by the number of
hardcore dimer coverings of the core of the interaction graph, while the latter
is related to the underconstrained degrees of freedom not touched by the
dimers. We additionally provide new numerical evidence suggesting that the
3-QSAT satisfiability transition may coincide with the product satisfiability
transition, which would imply the absence of an intermediate entangled
satisfiable phase.Comment: 11 pages, 6 figure
- …