102 research outputs found
Automated Analysis of Craniofacial Morphology Using Magnetic Resonance Images
Quantitative analysis of craniofacial morphology is of interest to scholars
working in a wide variety of disciplines, such as anthropology, developmental
biology, and medicine. T1-weighted (anatomical) magnetic resonance images (MRI)
provide excellent contrast between soft tissues. Given its three-dimensional
nature, MRI represents an ideal imaging modality for the analysis of
craniofacial structure in living individuals. Here we describe how T1-weighted
MR images, acquired to examine brain anatomy, can also be used to analyze facial
features. Using a sample of typically developing adolescents from the Saguenay
Youth Study (Nβ=β597; 292 male, 305 female, ages: 12 to 18
years), we quantified inter-individual variations in craniofacial structure in
two ways. First, we adapted existing nonlinear registration-based morphological
techniques to generate iteratively a group-wise population average of
craniofacial features. The nonlinear transformations were used to map the
craniofacial structure of each individual to the population average. Using
voxel-wise measures of expansion and contraction, we then examined the effects
of sex and age on inter-individual variations in facial features. Second, we
employed a landmark-based approach to quantify variations in face surfaces. This
approach involves: (a) placing 56 landmarks (forehead, nose, lips, jaw-line,
cheekbones, and eyes) on a surface representation of the MRI-based group
average; (b) warping the landmarks to the individual faces using the inverse
nonlinear transformation estimated for each person; and (3) using a principal
components analysis (PCA) of the warped landmarks to identify facial features
(i.e. clusters of landmarks) that vary in our sample in a correlated fashion. As
with the voxel-wise analysis of the deformation fields, we examined the effects
of sex and age on the PCA-derived spatial relationships between facial features.
Both methods demonstrated significant sexual dimorphism in craniofacial
structure in areas such as the chin, mandible, lips, and nose
Alcohol Use during Pregnancy: Considerations for Australian Policy
Although there is an extensive recorded history of concerns related to alcohol exposed pregnancies and possible outcomes of fetal alcohol spectrum disorder in recent scientific literature, Australia has only recently begun to accurately or systematically diagnose and record these conditions, or to provide comprehensive, coordinated, policy-guided funding, prevention, and treatment. This article discusses some considerations that can guide policy development within the Australian context including the social context and determinates of alcohol consumption during pregnancy and the need to consider the issue as one that goes beyond the decision making of individual women. The article also identifies the contribution of research to guide evidence-based policy development, including emerging evidence of epigenetics, and systematic reviews for prevention. Other policy considerations include costs, and the possibility of the prevention paradox applying to this field, with its associated impact on costs and focus of prevention
Effects of Ethanol and NAP on Cerebellar Expression of the Neural Cell Adhesion Molecule L1
The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10β12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression
Neurodevelopment of children exposed in utero to treatment of maternal malignancy
Cancer is the second most common cause of death during the reproductive years, complicating approximately 1/1000 pregnancies. The occurrence of cancer during gestation is likely to increase as a result of a woman's tendency to delay childbearing. Improved diagnostic techniques for malignancies increases detection of cancer during pregnancy. Malignant conditions during gestation are believed to be associated with an increase in poor perinatal and fetal outcomes that are often due to maternal treatment. Physicians should weigh the benefits of treatment against the risks of fetal exposure. To date, most reports have focused on morphologic observations made very close to the time of delivery with little data collected on children's long-term neurodevelopment following in utero exposure to malignancy and treatment. Because the brain differentiates throughout pregnancy and in early postnatal life, damage may occur even after first trimester exposure. The possible delayed effects of treatment on a child's neurological, intellectual and behavioural functioning have never been systematically evaluated. The goal of this report was to summarize all related issues into one review to facilitate both practitioners' and patients' access to known data on fetal risks and safety. Β© 2001 Cancer Research Campaign http://www.bjcancer.co
Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse
Recommended from our members
Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly-a new syndrome? Part I: Clinical, causal, and pathogenetic considerations
- β¦