62 research outputs found

    Quasi-Bezier curves integrating localised information

    Get PDF
    Bezier curves (BC) have become fundamental tools in many challenging and varied applications, ranging from computer-aided geometric design to generic object shape descriptors. A major limitation of the classical Bezier curve, however, is that only global information about its control points (CP) is considered, so there can often be a large gap between the curve and its control polygon, leading to large distortion in shape representation. While strategies such as degree elevation, composite BC, refinement and subdivision reduce this gap, they also increase the number of CP and hence bit-rate, and computational complexity. This paper presents novel contributions to BC theory, with the introduction of quasi-Bezier curves (QBC), which seamlessly integrate localised CP information into the inherent global Bezier framework, with no increase in either the number of CP or order of computational complexity. QBC crucially retains the core properties of the classical BC, such as geometric continuity and affine invariance, and can be embedded into the vertex-based shape coding and shape descriptor framework to enhance rate-distortion performance. The performance of QBC has been empirically tested upon a number of natural and synthetically shaped objects, with both qualitative and quantitative results confirming its consistently superior approximation performance in comparison with both the classical BC and other established BC-based shape descriptor methods

    Evaluation of oseltamivir prophylaxis regimens for reducing influenza virus infection, transmission and disease severity in a ferret model of household contact

    Get PDF
    OBJECTIVES: The emergence of the pandemic influenza A(H1N1)pdm09 virus in 2009 saw a significant increase in the therapeutic and prophylactic use of neuraminidase inhibitors (NAIs) to mitigate the impact of this highly transmissible virus. Prior to the pandemic, many countries stockpiled NAIs and developed pandemic plans for the use of antiviral drugs, based on either treatment of high-risk individuals and/or prophylaxis of contacts. However, to date there has been a lack of in vivo models to test the efficacy of treatment or prophylaxis with NAIs, for influenza-infected individuals or exposed contacts, in a household setting. METHODS: A ferret model of household contact was developed to study the efficacy of different prophylaxis regimens in preventing infection in contact ferrets exposed to influenza A(H1N1)pdm09-infected index ferrets. RESULTS: Among the different prophylactic regimens, contact ferrets receiving oseltamivir prophylaxis twice daily showed better outcomes than those receiving oseltamivir once daily. Benefits included a significant delay in the time to secondary infection, lower weight loss and higher activity levels. The treatment of index ferrets at 36 h post-infection did not influence either secondary infection rates or clinical symptoms in exposed contact ferrets. Neither prophylaxis nor treatment prevented infection or reduced the duration of viral shedding, although clinical symptoms did improve in infected animals receiving prophylaxis. CONCLUSIONS: Different oseltamivir prophylaxis regimens did not prevent infections, but consistently resulted in a reduction in symptoms in infected ferrets. However, oseltamivir prophylaxis failed to reduce viral titres, which warrants further investigation in humans.Ding Yuan Oh, Sue Lowther, James M. McCaw, Sheena G. Sullivan, Sook-Kwan Leang, Jessica Haining, Rachel Arkinstall, Anne Kelso, Jodie Mcvernon, Ian G. Barr, Deborah Middleton, Aeron C. Hur

    Cross-sector, sessional employment of pharmacists in rural hospitals in Australia and New Zealand: a qualitative study exploring pharmacists’ perceptions and experiences

    Get PDF
    Background: Many rural hospitals in Australia and New Zealand do not have an on-site pharmacist. Sessional employment of a local pharmacist offers a potential solution to address the clinical service needs of non-pharmacist rural hospitals. This study explored sessional service models involving pharmacists and factors (enablers and challenges) impacting on these models, with a view to informing future sessional employment. Methods: A series of semi-structured one-on-one interviews was conducted with rural pharmacists with experience, or intention to practise, in a sessional employment role in Australia and New Zealand. Participants were identified via relevant newsletters, discussion forums and referrals from contacts. Interviews were conducted during August 2012-January 2013 via telephone or Skype™, for approximately 40–55 minutes each, and recorded.Results: Seventeen pharmacists were interviewed: eight with ongoing sessional roles, five with sessional experience, and four working towards sessional employment. Most participants provided sessional hospital services on a weekly basis, mainly focusing on inpatient medication review and consultation. Recognition of the value of pharmacists’ involvement and engagement with other healthcare providers facilitated establishment and continuity of sessional services. Funds pooled from various sources supplemented some pharmacists’ remuneration in the absence of designated government funding. Enhanced employment opportunities, district support and flexibility in services facilitated the continuous operation of the sessional service. Conclusions: There is potential to address clinical pharmacy service needs in rural hospitals by cross-sector employment of pharmacists. The reported sessional model arrangements, factors impacting on sessional employment of pharmacists and learnings shared by the participants should assist development of similar models in other rural communities

    Metabolic Factors Limiting Performance in Marathon Runners

    Get PDF
    Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as ‘hitting the wall’), and thousands drop out before reaching the finish lines (approximately 1–2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making ‘hitting the wall’ seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without ‘hitting the wall.’ The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding ‘the wall.’ The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon

    Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans

    Get PDF
    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity
    corecore