1,198 research outputs found

    An energy scale directly related to superconductivity in the high-TcT_c cuprate superconductors: Universality from the Fermi arc picture

    Full text link
    We have performed a temperature dependent angle-resolved photoemission spectroscopy (ARPES) study of the tri-layer high-TcT_c cuprate superconductor (HTSC) Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} (Bi2223), and have shown that the \textquotedblleft effective\textquotedblright superconducting (SC) gap Δsc\Delta_{\rm{sc}} defined at the end point of the Fermi arc and the TcT_c (= 110 K) approximately satisfies the weak-coupling BCS-relationship 2Δsc\Delta_{\rm{sc}} = 4.3kBTck_{\rm{B}}T_c. Combining this result with previous ARPES results on single- and double-layer cuprates, we show that the relationship between 2Δsc\Delta_{\rm{sc}} = 4.3kBTck_{\rm{B}}T_c holds for various HTSCs. Furthermore, at TT \sim TcT_c, the quasi-patricle width at the end point of the Fermi arc is found to coincide with Δsc\Delta_{\rm{sc}}, consistent with the context of Planckian dissipation.Comment: 5 pages, 4 figure

    Effect of electron-phonon coupling in the ARPES spectra of the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    Angle-resolved photoemission spectroscopy using tunable low energy photons allows us to study the quasi-particle (QP) dispersions of the inner and outer CuO2 planes (IP and OP) separately in the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} (Bi2223). The kink energy of the OP band is \sim 70 meV, as observed in various high-TcT_c cuprates, while that of the IP band is as large as 100 meV in the superconducting (SC) state. This large kink energy is attributed to the \sim 35 meV buckling mode plus the large (\sim 60 meV) SC gap of IP. The IP band also shows a weak kink feature at 70 meV in the SC state. The latter feature can be explained either by the 70 meV half-breathing mode or by the \sim 35 meV buckling-phonon mode plus the \sim 40 meV SC gap of OP if interlayer scattering of QP is involved.Comment: 5 pages, 2 figure

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Electronic structure reconstruction by orbital symmetry breaking in IrTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on IrTe2 which exhibits an interesting lattice distortion below 270 K and becomes triangular lattice superconductors by suppressing the distortion via chemical substitution or intercalation. ARPES results at 300 K show multi-band Fermi surfaces with six-fold symmetry which are basically consistent with band structure calculations. At 20 K in the distorted phase, whereas the flower shape of the outermost Fermi surface does not change from that at 300 K, topology of the inner Fermi surfaces is strongly modified by the lattice distortion. The Fermi surface reconstruction by the distortion depends on the orbital character of the Fermi surfaces, suggesting importance of Ir 5d and/or Te 5p orbital symmetry breaking.Comment: 4pages, 4figure

    Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy

    Get PDF
    Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long-term outcome has yet been established. Myocardial tenascin-C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long-term outcome in DCM. Methods and results One hundred and twenty-three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC-positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end-diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long-term outcome in DCM

    Phase diagram and magnetocaloric effect of CoMnGe_{1-x}Sn_{x} alloys

    Full text link
    We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetostructural phase transition in the range x=0.04 to x=0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as 4.5 J/(K kg) in a field of 1 Tesla. However, the large thermal hysteresis in this transition (~20 K) will limit its straightforward use in a magnetocaloric device.Comment: 12 pages, 5 figure

    SDW and FISDW transition of (TMTSF)2_2ClO4_4 at high magnetic fields

    Full text link
    The magnetic field dependence of the SDW transition in (TMTSF)2_2ClO4_4 for various anion cooling rates has been measured, with the field up to 27T parallel to the lowest conductivity direction cc^{\ast}. For quenched (TMTSF)2_2ClO4_4, the SDW transition temperature TSDWT_{\rm {SDW}} increases from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed below 18T, followed by a saturation behavior. These results are consistent with the prediction of the mean-field theory. From these behaviors, TSDWT_{\rm {SDW}} is estimated as TSDW0T_{\rm {SDW_0}}=13.5K for the perfect nesting case. This indicates that the SDW phase in quenched (TMTSF)2_2ClO4_4, where TSDWT_{\rm {SDW}} is less than 6K, is strongly suppressed by the two-dimensionality of the system. In the intermediate cooled state in which the SDW phase does not appear in zero field, the transition temperature for the field-induced SDW shows a quadratic behavior above 12T and there is no saturation behavior even at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can probably be attributed to the difference of the dimerized gap due to anion ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR
    corecore