52 research outputs found

    The primary structure of mitochondrial aspartate aminotrasferase from human heart

    Get PDF
    The complete amino acid sequence of the mitochondrial asparate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) from human heart has been determined based mainly on analysis of peptides obtained by digestion with trypsin and by chemical cleavage with cyanogen bromide. Comparison of the sequence with those of the isotopic isoenzymes from pig, rat and chicken showed 27, 29 and 55 differences, respectively, out of a total of 401 amino acid residues. Evidence for structural microheterogeneity at position 317 has also been obtained

    Serine hydroxymethyltransferase from Escherichia coli: purification and properties.

    No full text
    Serine hydroxymethyltransferase from Escherichia coli was purified to homogeneity. The enzyme was a homodimer of identical subunits with a molecular weight of 95,000. The amino acid sequence of the amino and carboxy-terminal ends and the amino acid composition of cysteine-containing tryptic peptides were in agreement with the primary structure proposed for this enzyme from the structure of the glyA gene (M. Plamann, L. Stauffer, M. Urbanowski, and G. Stauffer, Nucleic Acids Res. 11:2065-2074, 1983). The enzyme contained no disulfide bonds but had one sulfhydryl group on the surface of the protein. Several sulfhydryl reagents reacted with this exposed group and inactivated the enzyme. Spectra of the enzyme in the presence of substrates and substrate analogs showed that the enzyme formed the same complexes and in similar relative concentrations as previously observed with the cytosolic and mitochondrial rabbit liver isoenzymes. Kinetic studies with substrates showed that the affinity and synergistic binding of the amino acid and folate substrates were similar to those obtained with the rabbit liver isoenzymes. The enzyme catalyzed the cleavage of threonine, allothreonine, and 3-phenylserine to glycine and the corresponding aldehyde in the absence of tetrahydrofolate. The enzyme was also inactivated by D-alanine caused by the transamination of the active site pyridoxal phosphate to pyridoxamine phosphate. This substrate specificity was also observed with the rabbit liver isoenzymes. We conclude that the reaction mechanism and the active site structure of E. coli serine hydroxymethyltransferase are very similar to the mechanism and structure of the rabbit liver isoenzymes

    Site-directed mutagenesis techniques in the study of Escherichia coli serine hydroxymethyltransferase

    No full text
    The 3340-bp fragment containing the Escherichia coli glyA gene coding for serine hydroxymethyltransferase was reduced in size by PCR, and the 1600-bp fragment obtained was cloned into the vector pBR322 in both orientations (5'-3', and 3'-5'). This DNA manipulation allowed us to perform site-directed mutagenesis by PCR on the glyA gene. To overcome the problem of the presence of wild-type protein in the various mutant enzyme preparations, the E. coli strain GS245 used to express recombinant serine hydroxymethyltransferase was made recA deficient through generalized transduction mediated by phage P1. The new strain was used for the production of a mutant form of the enzyme, in which the pyridoxal 5'-phosphate binding lysine was substituted by a glutamine. The preparation of this mutant form was completely devoid of wild-type enzyme contamination and measurements of its catalytic activity in the transamination reactions of L- and D-alanine confirmed the suggestion that the active site lysine is not the base that removes the alpha-proton from the substrate

    The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase

    No full text
    Both the highly conserved Arg363 and Arg372 residues of Escherichia coli serine hydroxymethyltransferase were changed to alanine and lysine residues. Each of the four mutant proteins were purified to homogeneity and characterized with respect to spectral properties of the enzyme-bound pyridoxal phosphate and kinetic properties with substrates and substrate analogs. The R372A and R372 K mutant enzymes exhibited spectra and kinetic properties close to those of the wild-type enzyme. The R363 K mutant enzyme exhibited only 0.03% of the catalytic activity of the wild-type enzyme and a 15-fold reduction in affinity for glycine and serine. The R363A mutant enzyme did not bind serine and glycine and showed no activity with serine as the substrate. Both R363 K and R363A enzymes bound amino acid esters at the active site and catalyzed the retro-aldol cleavage of serine ethyl ester and serinamide. The catalytic activity of the R363 K and R363A enzymes with the serine ethyl ester were about 0.006% and 0.1% of wild-type enzyme activity with serine, respectively. The R363A mutant enzyme catalyzed the half transamination of D-alanine methyl ester and L-alanine methyl ester at rates similar to the rates of transamination of D-alanine and L-alanine by the wild-type enzyme. The results are interpreted to show that R363 is the binding site of the amino acid substrate carboxyl group and that forming an ion pair between R363 and the substrate carboxyl group is an important feature in catalysis by serine hydroxymethyltransferase. Evidence is also provided that R363 may play a role in the substrate-induced open to closed conformational change of the active site

    Serine hydroxymethyltransferase from Escherichia coli: Purification and properties

    No full text
    [No abstract available

    DB ⋈ HCI: Towards Bridging the Chasm between Graph Data Management and HCI

    No full text
    • …
    corecore