1,095 research outputs found
Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels
Sunflower oil enriched with curcuminoid compounds (CUs) was gelled by adding 5% (w/w) saturated monoglycerides (MG), rice bran waxes (RW) or a mixture of \u3b2-sitosterol and \u3b3-oryzanol (PS). The resulting oleogels differed for rheological properties and firmness due to the difference in gel network structure. PS oleogel was the firmest sample followed by RW and MG ones. Upon in vitro digestion, fatty acid release as a function of digestion time was greatly affected by oleogel structure: the extent of lipolysis decreased as oleogel strength increased (PS < RW < MG). On the other hand, the nature of the oleogelator affected CUs bioaccessibility, which was lower in oleogels containing crystalline particles (MG and RW). These findings appear interesting in the attempt to develop oleogels able to control lipid digestion as well as to deliver bioactive molecules in food systems
Modulation of Extra Virgin Olive Oil Digestibility through Oleogelation
Background. Extra virgin olive oil (EVOO) represents a key player in the Mediterranean diet for its health-promoting capacity. Although its use as a functional ingredient would be particularly interesting, the direct addition of EVOO to food is challenging due to its liquid state. EVOO conversion into a solid-like material through by oleogelation could enlarge its possible applications.
Methods. EVOO was gelled by adding 10% (w/w) of saturated monoglycerides (MG), rice bran waxes (RW), sunflower waxes (SW) or a β-sitosterol/γ-oryzanol mixture (PS). Oleogels were characterised for their structure and subjected to static in vitro digestion. The fatty acid release and destructuring behavior were assessed.
Results. The resulting oleogels differed for rheological properties and firmness due to the differences in gel network structure. PS oleogel was the firmest sample followed by SW, RW and MG ones. During in vitro digestion, the fatty acid release was significantly lower for all oleogels compared to unstructured oil. The different network provided by the four oleogelators not only influenced FA release, but also the intestinal micellar size.
Conclusion. Acquired results could open new horizons for EVOO application through oleogelation to obtain novel EVOO-based fat replacers and better deliver the EVOO health functionalities
Steering protein and lipid digestibility by oleogelation with protein aerogels
The aim of the present work was to assess the effect of an innovative oleogelation strategy, the aerogel-template approach, on protein and lipid digestibility. Whey protein isolate (WP) was converted into aerogel particles via supercritical CO2 drying. Oleogels were then prepared by absorption of sunflower (SO) or flaxseed (FLX) oil (80%, w/w) into the aerogel particle template and subjected to in vitro digestion. WP aerogel-templated oleogels showed a specific destructuring behaviour during digestion. Confocal micrographs clearly demonstrated that the original oleogel structure was lost at the gastric level, with the release of oil droplets smaller (D-32 30 mu m), stabilised by undigested aerogel proteins. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and bicinchoninic acid (BCA) assay confirmed that aerogelation reduced the gastric proteolysis of WP from nearly 100% to 70%. The digestion of the SO oleogel led to similar gastric protein digestibility. In contrast, in the case of the FLX oleogel, gastric proteolysis decreased to 40%, suggesting a role of the oil nature in steering WP aerogel digestion. In all cases, upon intestinal digestion aerogel proteins resulted completely hydrolysed. The lipolysis degree of SO (75%) and FLX (34%) oil in the oleogels was higher than that of the unstructured SO (66%) and FLX (24%) oils, due to the larger surface offered by smaller oil droplets to the action of intestinal lipases. This was confirmed by dynamic light scattering, showing a shift towards smaller size in the digestive micelle distribution of oleogels at the end of the intestinal phase. Oleogelation through the WP aerogel-template approach could be regarded as a strategy to steer lipid digestibility while also modulating the release of bioaccessible peptides
Nonlinear models of the bump cepheid HV 905 and the distance modulus to the large magellanic cloud
Nonlinear pulsation models have been used to simulate the light curve of the LMC bump Cepheid HV 905. In order to reproduce the light curve accurately, tight constraints on the input parameters M, L, and T-eff are required. The results, combined with accurate existing V and I photometry, yield an LMC distance modulus of 18.51 +/- 0.05, and they show that the luminosity of HV 905 is much higher than expected from the mass-luminosity relation of stellar evolution theory. If we assume that the pulsation models are accurate, this suggests that there is a larger amount of convective core overshoot during the main-sequence evolution of stars with M similar to 5 M. than is usually assumed
Theoretical Uncertainties in Red Giant Branch Evolution: The Red Giant Branch Bump
A Monte Carlo simulation exploring uncertainties in standard stellar
evolution theory on the red giant branch of metal-poor globular clusters has
been conducted. Confidence limits are derived on the absolute V-band magnitude
of the bump in the red giant branch luminosity function (M_v,b) and the excess
number of stars in thebump, R_b. The analysis takes into account uncertainties
in the primordial helium abundance, abundance of alpha-capture elements,
radiative and conductive opacities, nuclear reaction rates, neutrino energy
losses, the treatments of diffusion and convection, the surface boundary
conditions, and color transformations.
The uncertainty in theoretical values for the red giant bump magnitude varies
with metallicity between +0.13/-0.12 mag at [Fe/H] = -2.4 and +0.23/-0.21 mag
at [Fe/H] = -1.0 to 0.50 at [Fe/H] =
-1.0. These theoretical values for R_b are in agreement with observations.Comment: 30 pages, 6 figures. To appear in Ap
Oleogelation of extra virgin olive oil by different gelators affects lipid digestion and polyphenol bioaccessibility
The possibility to steer extra virgin olive oil (EVOO) digestion and polyphenol bioaccessibility through oleogelation was investigated. EVOO was converted into oleogels using lipophilic (monoglycerides, rice wax, sunflower wax, phytosterols) or hydrophilic (whey protein aerogel particles, WP) gelators. In-vitro digestion demonstrated that the oleogelator nature influenced both lipid digestion and polyphenol bioaccessibility. WP-based oleogels presented ∼100% free fatty acid release compared to ∼64% for unstructured EVOO and ∼40 to ∼55% for lipophilic-based oleogels. This behavior was attributed to the ability of WP to promote micelle formation through oleogel destructuring. Contrarily, the lower lipolysis of EVOO gelled with lipophilic gelators compared to unstructured EVOO suggested that the gelator obstructed lipase accessibility. Tyrosol and hydroxytyrosol bioaccessibility increased for WP oleogels (∼27%), while liposoluble-based oleogels reduced it by 7 to 13%. These findings highlight the deep effect of the gelator choice on the digestion fate of EVOO components in the human body
The Age Dependent Luminosities of the Red Giant Branch Bump, Asymptotic Giant Branch Bump, and Horizontal Branch Red Clump
Color-magnitude diagrams of globular clusters often exhibit a prominent
horizontal branch (HB) and may also show features such as the red giant branch
(RGB) bump and the asymptotic giant branch (AGB) bump. Stellar evolution theory
predicts that the luminosities of these features will depend on the metallicity
and age of the cluster. We calculate theoretical lines of 2 to 12 Gyr constant
age RGB-bumps and AGB-bumps in the V(HB-Bump)--[Fe/H] diagram, which shows the
brightness difference between the bump and the HB as a function of metallicity.
In order to test the predictions, we identify giant branch bumps in new Hubble
Space Telescope color-magnitude diagrams for 8 SMC clusters. First, we conclude
that the SMC cluster bumps are RGB-bumps. The data for clusters younger than ~6
Gyr are in fair agreement the relative age dependent luminosities of the HB and
RGB-bump. The V(HB-Bump)--[Fe/H] data for clusters older then ~6 Gyr
demonstrate a less satisfactory agreement with our calculations. We conclude
that ~6 Gyr is a lower bound to the age of clusters for which the Galactic
globular cluster, age independent V(HB-Bump)--[Fe/H] calibration is valid.
Application of the V(HB-bump)--[Fe/H] diagram to stellar population studies is
discussed.Comment: Accepted for publication in the Astrophysical Journal, 30 pages,
Latex aaspp4.sty, including 7 postscript figure
Sericin-based resins from silk degumming wastewater for the removal of heavy metal ions from water
Chromium (VI) is a water pollutant categorized as \u2018likely to be a carcinogen to humans\u2019 compound when orally ingested with estimated cancer potency 0.5 mg/kg/day. The European Directive 2001/59/EC poses a 5 \ub5g/L threshold concentration for Cr(VI) in groundwaters. In this work, a chemical process was devised to obtain heavy metal ion absorbing resins by the polyaddition of bisacrylamides and 1,2-diaminoethane with sericin using as reaction solvent raw waste-water from silk degumming processes. Silk sericin (SS) is a natural globural protein deriving from silk worm Bombyx mori with molecular weight ranging from 10000 to 300000. Following the alkaline degumming process, sericin is degraded to peptides with molecular weight 20000. These peptides contain lysine-deriving residues that participate in the polyaddition leaving to a resin. This resin is a hybrid one in which a substantial portion is constituted by sericin peptides. The rationale of this approach is that the guanidinum ion has the ability to strongly bind oxoanions, due to its geometrical Y-shaped, planar orientation, optimizing charge distribution and hydrogen bonds [1]. SS resins were evaluated for the removal of both positively charged (Cu2+, Co2+, Ni2+, Mn2+) and negatively charged heavy metals oxoanions (CrO42-) from water. Different resins were obtained containing different amounts of sericin. These resins were characterized by elemental analysis and their structure confirmed by FT-IR/ATR spectroscopy. The swelling capacity of the new absorbents in different media and their thermal stability by DSC and TGA techniques were evaluated. The removal properties of resins towards Cu2+, Co2+, Ni2+, Mn2+ and CrO42- ions in aqueous single metal dilute and concentrate solutions were performed in batch absorption experiments and evaluated by EDTA titration in the case of Cu2+, Co2+, Ni2+, Mn2+, and by the UV-VIS spectroscopy in the case of CrO42-. The products showed different absorption capacities depending on the SS content in the resin. Treatment with 0.1 M HCl showed excellent regeneration with maintenance of the resins absorption capacity for 20 regeneration cycles.
In conclusion, sericin-based resins, besides being biocompatible, were endowed with environmental friendly preparation process; biodegradability; moderate cost; ability to fast and quantitatively absorb from aqueous solutions even at low pollutant concentration; full reversibility of the absorption process making it economically convenient both for regeneration and metal recovery
The shape of the Red Giant Branch Bump as a diagnostic of partial mixing processes in low-mass stars
We suggest to use the shape of the Red Giant Branch (RGB) Bump in metal-rich
globular clusters as a diagnostic of partial mixing processes between the base
of the convective envelope and the H-burning shell. The Bump located along the
differential luminosity function of cluster RGB stars is a key observable to
constrain the H-profile inside these structures. In fact, standard evolutionary
models that account for complete mixing in the convective unstable layers and
radiative equilibrium in the innermost regions do predict that the first
dredge-up lefts over a very sharp H-discontinuity at the bottom of the
convective region. Interestingly enough we found that both atomic diffusion and
a moderate convective overshooting at the base of the convective region
marginally affects the shape of the RGB Bump in the differential Luminosity
Function (LF). As a consequence, we performed several numerical experiments to
estimate whether plausible assumptions concerning the smoothing of the
H-discontinuity, due to the possible occurrence of extra-mixing below the
convective boundary, affects the shape of the RGB Bump. We found that the
difference between the shape of RGB Bump predicted by standard and by smoothed
models can be detected if the H-discontinuity is smoothed over an envelope
region whose thickness is equal or larger than 0.5 pressure scale heights.
Finally, we briefly discuss the comparison between theoretical predictions and
empirical data in metal-rich, reddening free Galactic Globular Clusters (GGCs)
to constrain the sharpness of the H-profile inside RGB stars.Comment: 15 pages, 8 postscript figures, ApJ in pres
- …