1,169 research outputs found

    A family of loss-tolerant quantum coin flipping protocols

    Full text link
    We present a family of loss-tolerant quantum strong coin flipping protocols; each protocol differing in the number of qubits employed. For a single qubit we obtain a bias of 0.4, reproducing the result of Berl\'{i}n et al. [Phys. Rev. A 80, 062321 (2009)], while for two qubits we obtain a bias of 0.3975. Numerical evidence based on semi-definite programming indicates that the bias continues to decrease as the number of qubits is increased but at a rapidly decreasing rate

    On the relation between Bell inequalities and nonlocal games

    Full text link
    We investigate the relation between Bell inequalities and nonlocal games by presenting a systematic method for their bilateral conversion. In particular, we show that while to any nonlocal game there naturally corresponds a unique Bell inequality, the converse is not true. As an illustration of the method we present a number of nonlocal games that admit better odds when played using quantum resourcesComment: v3 changes: Updates to reflect PLA version. 1 examples changed. Physics Letters A (accepted for publication

    Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior

    Full text link
    Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees of freedom can reside in the interior of a black hole. We suggest that this is a consequence of the fact that the volume of any interior sphere of finite surface area simply vanishes. Obviously, this is not the case in general relativity. However, we show that such a phenomenon does occur in various gravitational theories which admit a spontaneously induced general relativity. In such theories, due to a phase transition (one parameter family degenerates) which takes place precisely at the would have been horizon, the recovered exterior Schwarzschild solution connects, by means of a self-similar transition profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume and a locally varying Newton constant. This constitutes the so-called 'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010

    Charge and spin collective modes in a quasi-1D model of Sr2RuO4

    Full text link
    Given that Sr2RuO4 is a two-component p-wave superconductor, there exists the possibility of well defined collective modes corresponding to fluctuations of the relative phase and spin-orientation of the two components of the order parameter. We demonstrate that at temperatures much below Tc, these modes have energies small compared to the pairing gap scale if the superconductivity arises primarily from the quasi 1D (dxz and dyz) bands, while it is known that their energies become comparable to the pairing gap scale if there is a substantial involvement of the quasi 2D (dxy) band. Therefore, the orbital origin of the superconductivity can be determined by measuring the energies of these collective modes.Comment: 11 pages (6 pages for main text), 2 figure

    Holographic Entropy Packing inside a Black Hole

    Full text link
    If general relativity is spontaneously induced, the black hole limit is governed by a phase transition which occurs precisely at the would have been horizon. The exterior Schwarzschild solution then connects with a novel core of vanishing spatial volume. The Kruskal structure, admitting the exact Hawking imaginary time periodicity, is recovered, with the conic defect defused at the origin, rather than at the horizon. The entropy stored inside \textbf{any} interior sphere is universal, equal to a quarter of its surface area, thus locally saturating the 't Hooft-Susskind holographic bound. The associated Komar mass and material energy functions are non-singular.Comment: [V3] accepted to PRL (version shortened, a paragraph on singularity structure added); 10 pages, no figure

    A Hybrid Microgrid Operated by PV Wind and Diesel Generator with Advanced Control Strategy

    Get PDF
    All for a local area that gets its power from a solitary diesel generator (DG), this examination presents an efficient power energy choice for a microgrid. A twin feed enlistment generator draws power from a sun oriented photovoltaic (PV) cluster and the breeze to run this microgrid's electrical gear (DFIG). Two voltage source converters (VSCs) are sequentially coupled on the rotor side of the DFIG and share a DC transport that at last prompts the photovoltaic modules. Likewise associated with a similar DC transport as the DFIG stator is a bidirectional buck/help DC converter and a battery energy capacity (BES) to retain any overflow power. Most extreme energy collecting from the breeze and sun is accomplished by regulation of the bidirectional buck/help DC converter and the rotor side VSC. A changed form of the irritate and notice (P&O) technique is introduced for of expanding the energy result of a PV framework. Endeavors are being made to change VSC on the heap side to further develop DG's eco-friendliness. The ideal fuel-use reference DG power result may now be resolved utilizing a new, more broad methodology. Using the Sim Power Systems toolbox in MATLAB, we model and simulate many scenarios, including fluctuating wind speeds, fluctuating insolation, the impact of fluctuating load conditions on a bidirectional converter, and an unbalanced nonlinear load linked at the point of common coupling (PCC). Finding sinusoidal and balanced DG and DFIG stator currents

    SU(5) grand unification on a domain-wall brane from an E_6-invariant action

    Get PDF
    An SU(5) grand unification scheme for effective 3+1-dimensional fields dynamically localised on a domain-wall brane is constructed. This is achieved through the confluence of the clash-of-symmetries mechanism for symmetry breaking through domain-wall formation, and the Dvali-Shifman gauge-boson localisation idea. It requires an E_6 gauge-invariant action, yielding a domain-wall solution that has E_6 broken to differently embedded SO(10) x U(1) subgroups in the two bulk regions on opposite sides of the wall. On the wall itself, the unbroken symmetry is the intersection of the two bulk subgroups, and contains SU(5). A 4+1-dimensional fermion family in the 27 of E_6 gives rise to localised left-handed zero-modes in the 5^* + 10 + 1 + 1 representation of SU(5). The remaining ten fermion components of the 27 are delocalised exotic states, not appearing in the effective 3+1-dimensional theory on the domain-wall brane. The scheme is compatible with the type-2 Randall-Sundrum mechanism for graviton localisation; the single extra dimension is infinite.Comment: 21 pages, 9 figures. Minor changes to text and references. To appear in Phys. Rev.
    • …
    corecore