544 research outputs found

    Neutrino and astroparticle physics : Working group report

    Get PDF
    The contributions made to the Working Group activities on neutrino and astroparticle physics are summarised in this article. The topics discussed were leptogenesis in Left-Right symmetric model, inflationary models in Raman-Sundrum scenarios, ultra high energy cosmic rays and neutrino oscillations in 4 flavour and decaying neutrino models.Comment: 11 pages; arXiv copy of contribution to WHEPP-6 proceeding

    Leptogenesis with Left-Right domain walls

    Full text link
    The presence of domain walls separating regions of unbroken SU(2)LSU(2)_L and SU(2)RSU(2)_R is shown to provide necessary conditions for leptogenesis which converts later to the observed Baryon aymmetry. The strength of lepton number violation is related to the majorana neutrino mass and hence related to current bounds on light neutrino masses. Thus the observed neutrino masses and the Baryon asymmetry can be used to constrain the scale of Left-Right symmetry breaking.Comment: References added, To appear in Praman

    Canonical Quantization Inside the Schwarzschild Black Hole

    Full text link
    We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to the need for CPT invariance to construct an explicitly positive definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum.Comment: 8 pages, LaTex. Title altered. One reference added. A few typos esp. eq.(7),(38) corrected. To appear in Class.Q.Gra

    Gauge mediated supersymmetry breaking and the cosmology of Left-Right symmetric model

    Full text link
    Left-Right symmetry including supersymmetry presents an important class of gauge models which may possess natural solutions to many issues of phenomenology. Cosmology of such models indicates a phase transition accompanied by domain walls. Such walls must be unstable in order to not conflict with standard cosmology, and can further be shown to assist with open issues of cosmology such as dilution of unwanted relic densities and leptogenesis. In this paper we construct a model of gauge mediated supersymmetry breaking in which parity breaking is also signalled along with supersymmetry breaking and so as to be consistent with cosmological requirements. It is shown that addressing all the stated cosmological issues requires an extent of fine tuning, while in the absence of fine tuning, leptogenesis accompanying successful completion of the phase transition is still viable

    Fate of the false monopoles: induced vacuum decay

    Full text link
    We study a gauge theory model where there is an intermediate symmetry breaking to a meta- stable vacuum that breaks a simple gauge group to a U (1) factor. Such models admit the existence of meta-stable magnetic monopoles, which we dub false monopoles. We prove the existence of these monopoles in the thin wall approximation. We determine the instantons for the collective coordinate that corresponds to the radius of the monopole wall and we calculate the semi-classical tunneling rate for the decay of these monopoles. The monopole decay consequently triggers the decay of the false vacuum. As the monopole mass is increased, we find an enhanced rate of decay of the false vacuum relative to the celebrated homogeneous tunneling rate due to Coleman [1].Comment: 10 pages, 4 figure

    Neutrino mass and charged lepton flavor violation in an extended left-right symmetric model

    Full text link
    We consider an U(1)LμLτU(1)_{L_\mu -L_\tau} extended left-right symmetric gauge theory where the neutrino masses are generated through inverse seesaw mechanism. In this model the muon (g2)(g-2) anomaly is accounted for by the mediation of ZμτZ_{\mu\tau}, the gauge boson of U(1)LμLτU(1)_{L_\mu - L_\tau} symmetry. The symmetries of the model require the light neutrino mass matrix to have a particular two-zero texture, which leads to non-trivial constraints in the minimum neutrino mass. In addition, the model predicts observable charged lepton flavor violation in μτ\mu-\tau sector.Comment: 21 pages, 2 figures, 2 tables, Version accepted in Nucl. Phys.

    Schwarzschild black hole with global monopole charge

    Get PDF
    We derive the metric for a Schwarzschild black hole with global monopole charge by relaxing asymptotic flatness of the Schwarzschild field. We then study the effect of global monopole charge on particle orbits and the Hawking radiation. It turns out that existence, boundedness and stability of circular orbits scale up by (18πη2)1(1-8 \pi\eta^2)^{-1}, and the perihelion shift and the light bending by (18πη2)3/2(1-8 \pi\eta^2)^{-3/2}, while the Hawking temperature scales down by (18πη2)2(1 - 8 \pi \eta^2)^2 the Schwarzschild values. Here η\eta is the global charge.Comment: 12 pages, LaTeX versio
    corecore