14 research outputs found

    Strong asymmetry of microwave absorption by bi-layer conducting ferromagnetic films in the microstrip-line based broadband ferromagnetic resonance

    Full text link
    Peculiarities of ferromagnetic resonance response of conducting magnetic bi-layer films of nanometric thicknesses excited by microstrip microwave transducers have been studied theoretically. Strong asymmetry of the response has been found. Depending on the order of layers with respect to the transducer either the first higher-order standing spin wave mode, or the fundamental mode shows the largest response. Film conductivity and lowered symmetry of microwave fields of such transducers are responsible for this behavior. Amplitude of which mode is larger also depends on the driving frequency. This effect is explained as shielding of the asymmetric transducer field by eddy currents in the films. This shielding remains very efficient for films with thicknesses well below the microwave skin depth. This effect may be useful for studying buried magnetic interfaces and should be accounted for in future development of broadband inductive ferromagnetic resonance methods.Comment: 21 Page, 4 figure

    Three-Body Halos in Two Dimensions

    Get PDF
    A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordinate space for short-range potentials. Occurrences of spatially extended structures (halos) are investigated. Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak binding limit turn out to be universal. PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic
    corecore