187 research outputs found

    Pyrenophora tritici-repentis, Causal Agent of Tan Spot: A Review of Intraspecific Genetic Diversity

    Get PDF
    In some countries where the wheat is cultivated, the biological adversities are led by foliar disease. These diseases have emerged as a serious problem in many areas where the wheat is the principal crop. In the last few years, minimum tillage has been considered advantageous to soil conservation, but it leads to a loss of available nutrients and a potential increase in necrotic pathogens whose saprophytic stage lives in the straw of the crop (Annone, 1985). Establishment of the crop under this management can be affected by pathogens of this type. Leaf spotting diseases can be caused by one or a combination of leaf spotting pathogens (Table 1). Leaf spotting diseases affect wheat grown reduce the photosynthetic area of leaves resulting in reduced grain filling and lower yields; particularly when the top two leaves (penultimate and flag leaves) are severely infected. The most of these diseases are similar in host symptomatology, disease cycle, life cycles of pathogens and types of damage induced. Whitin of these pathogens the Ascomycota fungus, Pyrenophora tritici-repentis (Ptr) (Died.) Drechs. It is a facultative pathogen whose asexual stage is Drechslera tritici-repentis (Dtr) (Died.). This pathogen is the causal agent of tan spot of wheat

    Complete genome sequence of an astrovirus identified in a domestic rabbit (\u3cem\u3eOryctolagus cuniculus\u3c/em\u3e) with gastroenteritis

    Get PDF
    A colony of domestic rabbits in Tennessee, USA, experienced a high-mortality (~90%) outbreak of enterocolitis. The clinical characteristics were one to six days of lethargy, bloating, and diarrhea, followed by death. Heavy intestinal coccidial load was a consistent finding as was mucoid enteropathy with cecal impaction. Preliminary analysis by electron microscopy revealed the presence of virus-like particles in the stool of one of the affected rabbits. Analysis using the Virochip, a viral detection microarray, suggested the presence of an astrovirus, and follow-up PCR and sequence determination revealed a previously uncharacterized member of that family. Metagenomic sequencing enabled the recovery of the complete viral genome, which contains the characteristic attributes of astrovirus genomes. Attempts to propagate the virus in tissue culture have yet to succeed. Although astroviruses cause gastroenteric disease in other mammals, the pathogenicity of this virus and the relationship to this outbreak remains to be determined. This study therefore defines a viral species and a potential rabbit pathogen

    Diversity of Mobile Genetic Elements in the Mitogenomes of Closely Related Fusarium culmorum and F. graminearum sensu stricto Strains and Its Implication for Diagnostic Purposes

    Get PDF
    Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (Fusarium oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria

    Planet-star interactions with precise transit timing. III. Entering the regime of dynamical tides

    Get PDF
    Hot Jupiters on extremely short-period orbits are expected to be unstable to tidal dissipation and spiral toward their host stars. That is because they transfer the angular momentum of the orbital motion through tidal dissipation into the stellar interior. Although the magnitude of this phenomenon is related to the physical properties of a specific star-planet system, statistical studies show that tidal dissipation might shape the architecture of hot Jupiter systems during the stellar lifetime on the main sequence. The efficiency of tidal dissipation remains poorly constrained in star-planet systems. Stellar interior models show that the dissipation of dynamical tides in radiation zones could be the dominant mechanism driving planetary orbital decay. These theoretical predictions can be verified with the transit timing method. We acquired new precise transit mid-times for five planets. They were previously identified as the best candidates for which orbital decay might be detected. Analysis of the timing data allowed us to place tighter constraints on the orbital decay rate. No statistically significant changes in their orbital periods were detected for all five hot Jupiters in systems HAT-P-23, KELT-1, KELT-16, WASP-18, and WASP-103. For planets HAT-P-23 b, WASP-18 b, and WASP-103 b, observations show that the mechanism of the dynamical tides dissipation probably does not operate in their host stars, preventing them from rapid orbital decay. This finding aligns with the models of stellar interiors of F-type stars, in which dynamical tides are not fully damped due to convective cores. For KELT-16 b, the span of transit timing data was not long enough to verify the theoretical predictions. KELT-1 b was identified as a potential laboratory for studying the dissipative tidal interactions of inertial waves in a convective layer.Comment: Accepted for publication in A&

    Diversity of mobile genetic elements in the mitogenome of closely related Fusarium culmorum and F. graminearum sensu stricto strains ans its implication for diagnostic purposes

    Get PDF
    Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (F. oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria.Fil: Kulik, Tomasz. Department Of Botany And Nature Protection, University; PoloniaFil: Brankovics, Balazs. Wageningen Plant Research, Wageningen University; Países BajosFil: Van Diepeningen, Anne D.. Waneningen Plant Research; Países BajosFil: Bilska, Katarzyna. Department Of Botany And Nature Protection, University; PoloniaFil: Zelechowski, Maciej. Department Of Botany And Nature Protection, University; PoloniaFil: Myszczyński, Kamil. Department Of Botany And Nature Protection, University; PoloniaFil: Molcan, Tomasz. Faculty Of Biology And Biotechnology, University; PoloniaFil: Stakheev. Alexander. Institute Of Bioorganic Chemistry (ras); RusiaFil: Stenglein, Sebastian Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnolológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología. Laboratorio de Biología Funcional y Biotecnología; ArgentinaFil: Beyer, Marco. Luxembourg Institute Of Science And Technology; LuxemburgoFil: Pasquali, Matias. Faculty Of Agricultural And Food Sciences; ItaliaFil: Sawicki, Jakub. Department Of Botany And Nature Protection, University; PoloniaFil: Baturo Cieśniewska, Anna. Baturo-cieśniewska; Poloni

    Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2

    Get PDF
    Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and noninvasively observe animals. The vast number of images collected from camera trap projects has prompted some biologists to employ machine learning algorithms to automatically recognize species in these images, or at least filter-out images that do not contain animals. These approaches are often limited by model transferability, as a model trained to recognize species from one location might not work as well for the same species in different locations. Furthermore, these methods often require advanced computational skills, making them inaccessible to many biologists. We used 3 million camera trap images from 18 studies in 10 states across the United States of America to train two deep neural networks, one that recognizes 58 species, the “species model,” and one that determines if an image is empty or if it contains an animal, the “empty-animal model.” Our species model and empty-animal model had accuracies of 96.8% and 97.3%, respectively. Furthermore, the models performed well on some out-of-sample datasets, as the species model had 91% accuracy on species from Canada (accuracy range 36%–91% across all out-of-sample datasets) and the empty-animal model achieved an accuracy of 91%–94% on out-of-sample datasets from different continents. Our software addresses some of the limitations of using machine learning to classify images from camera traps. By including many species from several locations, our species model is potentially applicable to many camera trap studies in North America. We also found that our empty-animal model can facilitate removal of images without animals globally. We provide the trained models in an R package (MLWIC2: Machine Learning for Wildlife Image Classification in R), which contains Shiny Applications that allow scientists with minimal programming experience to use trained models and train new models in six neural network architectures with varying depths

    Divergent Serpentoviruses in Free-Ranging Invasive Pythons and Native Colubrids in Southern Florida, United States

    Get PDF
    Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation

    Pearl millet populations characterized by Fusarium prevalence, morphological traits, phenolic content, and antioxidant potential

    Get PDF
    Background: Pearl millet (Pennisetum glaucum L.) has become increasingly attractive due to its health benefits. It is grown as food for human consumption and fodder for livestock in Africa and Asia. This study focused on five pearl millet populations from different agro-ecological zones from Tunisia, and on characterization by morphological traits, total phenolic and flavonoid content, antioxidant activity, and occurrence of Fusarium. Results: Analysis of variance revealed highly significant differences between populations for the quantitative traits. The highest grain weights occurred in the pearlmillet cultivated in Zaafrana and Gergis of Tunisia. Early flowering and earlymaturing populations cultivated in the center (Zaafrana, Rejiche) and south (Gergis) of Tunisia tended to have a higher grain yield. The Zaafrana population showed the highest value of green fodder potentiel (number andweight of leaves/cultivar and theweight of tillers and total plant/cultivar) followed by Gergis and Rejiche. The Kelibia population showed the highest total phenolic and flavonoid content. Rejiche exhibited the greatest antioxidant activity. Trans-cinnamic, protocatechuic, and hydroxybenzoic acids were the major phenolic compounds in all the extracts. Three Fusarium species were identified in Tunisian pearl millet populations based on morphologic and molecular characterization. Fusarium graminearum and Fusarium culmorum occurred most frequently. The average incidence of the three Fusarium species was relatively low (<5%) in all populations. The lowest infection rate (0.1%) was recorded in the samples from Zaafrana. Conclusion: Chemometric analysis confirmed the usefulness of the above traits for discrimination of pearl millet populations, where a considerable variation according to geographical origin and bioclimatic conditions was observed. © 2020 Society of Chemical Industr

    Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular cytidine deaminase APOBEC3G (A3G), when incorporated into the human immunodeficiency virus type 1 (HIV-1), renders viral particles non-infectious. We previously observed that mutation of a single cysteine residue of A3G (C100S) inhibited A3G packaging. In addition, several recent studies showed that mutation of tryptophan 127 (W127) and tyrosine 124 (Y124) inhibited A3G encapsidation suggesting that the N-terminal CDA constitutes a viral packaging signal in A3G. It was also reported that W127 and Y124 affect A3G oligomerization.</p> <p>Results</p> <p>Here we studied the mechanistic basis of the packaging defect of A3G W127A and Y124A mutants. Interestingly, cell fractionation studies revealed a strong correlation between encapsidation, lipid raft association, and genomic RNA binding of A3G. Surprisingly, the presence of a C-terminal epitope tag affected lipid raft association and encapsidation of the A3G W127A mutant but had no effect on wt A3G encapsidation, lipid raft association, and interaction with viral genomic RNA. Mutation of Y124 abolished A3G encapsidation irrespective of the presence or absence of an epitope tag. Contrasting a recent report, our co-immunoprecipitation studies failed to reveal a correlation between A3G oligomerization and A3G encapsidation. In fact, our W127A and Y124A mutants both retained the ability to oligomerize.</p> <p>Conclusion</p> <p>Our results confirm that W127 and Y124 residues in A3G are important for encapsidation into HIV-1 virions and our data establish a novel correlation between genomic RNA binding, lipid raft association, and viral packaging of A3G. In contrast, we were unable to confirm a role of W127 and Y124 in A3G oligomerization and we thus failed to confirm a correlation between A3G oligomerization and virus encapsidation.</p

    Replication Protein A (RPA) Hampers the Processive Action of APOBEC3G Cytosine Deaminase on Single-Stranded DNA

    Get PDF
    deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. on long ssDNA regions. This resembles the “hit and run” single base substitution events observed in yeast., we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance
    corecore