1,329 research outputs found

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi

    Chiral Vertex Operators in Off-Conformal Theory: The Sine-Gordon Example

    Full text link
    We study chiral vertex operators in the sine-Gordon [SG] theory, viewed as an off-conformal system. We find that these operators, which would have been primary fields in the conformal limit, have interesting and, in some ways, unexpected properties in the SG model. Some of them continue to have scale- invariant dynamics even in the presence of the non-conformal cosine interaction. For instance, it is shown that the Mandelstam operator for the bosonic representation of the Fermi field does {\it not} develop a mass term in the SG theory, contrary to what the real Fermi field in the massive Thirring model is expected to do. It is also shown that in the presence of the non-conformal interactions, some vertex operators have unique Lorentz spins, while others do not.Comment: 32 pages, Univ. of Illinois Preprint # ILL-(TH)-93-1

    Development and operation of research-scale III-V nanowire growth reactors

    Full text link
    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy (MOVPE) reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2 X 109^{-9} Torr. A load-lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm2^2(V.s).Comment: Related papers at http://pettagroup.princeton.ed

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    Towards the Construction of Wightman Functions of Integrable Quantum Field Theories

    Full text link
    The purpose of the ``bootstrap program'' for integrable quantum field theories in 1+1 dimensions is to construct a model in terms of its Wightman functions explicitly. In this article, this program is mainly illustrated in terms of the sine-Gordon and the sinh-Gordon model and (as an exercise) the scaling Ising model. We review some previous results on sine-Gordon breather form factors and quantum operator equations. The problem to sum over intermediate states is attacked in the short distance limit of the two point Wightman function for the sinh-Gordon and the scaling Ising model.Comment: LATEX 18 pages, Talk presented at the '6th International Workshop on Conformal Field Theories and Integrable Models', in Chernologka, September 200

    Massive Vector Mesons and Gauge Theory

    Get PDF
    We show that the requirements of renormalizability and physical consistency imposed on perturbative interactions of massive vector mesons fix the theory essentially uniquely. In particular physical consistency demands the presence of at least one additional physical degree of freedom which was not part of the originally required physical particle content. In its simplest realization (probably the only one) these are scalar fields as envisaged by Higgs but in the present formulation without the ``symmetry-breaking Higgs condensate''. The final result agrees precisely with the usual quantization of a classical gauge theory by means of the Higgs mechanism. Our method proves an old conjecture of Cornwall, Levin and Tiktopoulos stating that the renormalization and consistency requirements of spin=1 particles lead to the gauge theory structure (i.e. a kind of inverse of 't Hooft's famous renormalizability proof in quantized gauge theories) which was based on the on-shell unitarity of the SS-matrix. We also speculate on a possible future ghostfree formulation which avoids ''field coordinates'' altogether and is expected to reconcile the on-shell S-matrix point of view with the off-shell field theory structure.Comment: 53 pages, version to appear in J. Phys.

    Four Dimensional CFT Models with Rational Correlation Functions

    Get PDF
    Recently established rationality of correlation functions in a globally conformal invariant quantum field theory satisfying Wightman axioms is used to construct a family of soluble models in 4-dimensional Minkowski space-time. We consider in detail a model of a neutral scalar field ϕ\phi of dimension 2. It depends on a positive real parameter c, an analogue of the Virasoro central charge, and admits for all (finite) c an infinite number of conserved symmetric tensor currents. The operator product algebra of ϕ\phi is shown to coincide with a simpler one, generated by a bilocal scalar field V(x1,x2)V(x_1,x_2) of dimension (1,1). The modes of V together with the unit operator span an infinite dimensional Lie algebra LVL_V whose vacuum (i.e. zero energy lowest weight) representations only depend on the central charge c. Wightman positivity (i.e. unitarity of the representations of LVL_V) is proven to be equivalent to cNc \in N.Comment: 28 pages, LATEX, amsfonts, latexsym. Proposition 2.3, and Conjecture in Sec. 6 are revised. Minor errors are correcte

    Effective Lagrangians in 2+ϵ2 + \epsilon Dimensions

    Full text link
    The failure of the the loop expansion and effective lagrangians in two dimensions, which traditionally hinges on a power counting argument is considered. We establish that the book keeping device for the loop expansion, a role played by (the reciprocal of) the pion-decay constant itself vanishes for d=2d=2, thereby going beyond the power counting argument. We point the connection of our results to the distinct phases of the candidate for the effective lagrangians, the non-linear sigma model, in d=2+ϵd=2+\epsilon, and eventually for d=2d=2. In light of our results, we recall some of the relavant features of the multi-flavor Schwinger and large NfN_f QCD2QCD_2 as candidates for the underlying theory in d=2d=2.Comment: 13 pages plain LaTeX, to be run twice. Replaced with expanded and corrected version. One footnote adde

    Is the brick-wall model unstable for a rotating background?

    Get PDF
    The stability of the brick wall model is analyzed in a rotating background. It is shown that in the Kerr background without horizon but with an inner boundary a scalar field has complex-frequency modes and that, however, the imaginary part of the complex frequency can be small enough compared with the Hawking temperature if the inner boundary is sufficiently close to the horizon, say at a proper altitude of Planck scale. Hence, the time scale of the instability due to the complex frequencies is much longer than the relaxation time scale of the thermal state with the Hawking temperature. Since ambient fields should settle in the thermal state in the latter time scale, the instability is not so catastrophic. Thus, the brick wall model is well defined even in a rotating background if the inner boundary is sufficiently close to the horizon.Comment: Latex, 17 pages, 1 figure, accepted for publication in Phys. Rev.
    corecore