8 research outputs found

    Detection of the Unusual Magnetic Orders in the Pseudogap Region of a High-Temperature Superconducting YBa2Cu3O6.6 Crystal by Muon-Spin Relaxation

    Full text link
    We present muon spin relaxation (muSR) measurements on a large YBa2Cu3O6.6 single crystal in which two kinds of unusual magnetic order have been detected in the pseudogap region by neutron scattering. A comparison is made to measurements on smaller, higher quality YBa2Cu3Oy single crystals. One type of magnetic order is observed in all samples, but does not evolve significantly with hole doping. A second type of unusual magnetic order is observed only in the YBa2Cu3O6.6 single crystal. This magnetism has an ordered magnetic moment that is quantitatively consistent with the neutron experiments, but is confined to just a small volume of the sample (~ 3%). Our findings do not support theories that ascribe the pseudogap to a state characterized by loop-current order, but instead indicate that dilute impurity phases are the source of the unusual magnetic orders in YBa2Cu3Oy.Comment: 4 pages, 4 figure

    Inhomogeneous Magnetic-Field Response of YBa2Cu3Oy and La2-xSrxCuO4 Persisting above the Bulk Superconducting Transition Temperature

    Full text link
    We report that in YBa2Cu3Oy and La2-xSrxCuO4 there is a spatially inhomogeneous response to magnetic field for temperatures T extending well above the bulk superconducting transition temperature Tc. An inhomogeneous magnetic response is observed above Tc even in ortho-II YBa2Cu3O6.50, which has highly ordered doping. The degree of the field inhomogeneity above Tc tracks the hole doping dependences of both Tc and the density of the superconducting carriers below Tc, and therefore is apparently coupled to superconductivity.Comment: Modified discussio

    Hole doping dependences of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping

    Full text link
    We report on muon spin rotation measurements of the internal magnetic field distribution n(B) in the vortex solid phase of YBa2Cu3Oy (YBCO) single crystals, from which we have simultaneously determined the hole doping dependences of the in-plane Ginzburg-Landau (GL) length scales in the underdoped regime. We find that Tc has a sublinear dependence on 1/lambda_{ab}^2, where lambda_{ab} is the in-plane magnetic penetration depth in the extrapolated limits T -> 0 and H -> 0. The power coefficient of the sublinear dependence is close to that determined in severely underdoped YBCO thin films, indicating that the same relationship between Tc and the superfluid density is maintained throughout the underdoped regime. The in-plane GL coherence length (vortex core size) is found to increase with decreasing hole doping concentration, and exhibit a field dependence that is explained by proximity-induced superconductivity on the CuO chains. Both the magnetic penetration depth and the vortex core size are enhanced near 1/8 hole doping, supporting the belief by some that stripe correlations are a universal property of high-Tc cuprates.Comment: 12 pages, 13 figure

    Spin-glass state of vortices in YBa2Cu3Oy and La2-xSrxCuO4 below the metal-to-insulator crossover

    Full text link
    Highly disordered magnetism confined to individual weakly interacting vortices is detected by muon spin rotation in two different families of high-transition-temperature superconductors, but only in samples on the low-doping side of the low-temperature normal state metal-to-insulator crossover (MIC). The results support an extended quantum phase transition (QPT) theory of competing magnetic and superconducting orders that incorporates the coupling between CuO2 planes. Contrary to what has been inferred from previous experiments, the static magnetism that coexists with superconductivity near the field-induced QPT is not ordered. Our findings unravel the mystery of the MIC and establish that the normal state of high-temperature superconductors is ubiquitously governed by a magnetic quantum critical point in the superconducting phase.Comment: 9 pages, 9 figure

    Direct Search for a Ferromagnetic Phase in a Heavily Overdoped Nonsuperconducting Copper Oxide

    Full text link
    The doping of charge carriers into the CuO2 planes of copper oxide Mott insulators causes a gradual destruction of antiferromagnetism and the emergence of high-temperature superconductivity. Optimal superconductivity is achieved at a doping concentration p beyond which further increases in doping cause a weakening and eventual disappearance of superconductivity. A potential explanation for this demise is that ferromagnetic fluctuations compete with superconductivity in the overdoped regime. In this case a ferromagnetic phase at very low temperatures is predicted to exist beyond the doping concentration at which superconductivity disappears. Here we report on a direct examination of this scenario in overdoped La2-xSrxCuO4 using the technique of muon spin relaxation. We detect the onset of static magnetic moments of electronic origin at low temperature in the heavily overdoped nonsuperconducting region. However, the magnetism does not exist in a commensurate long-range ordered state. Instead it appears as a dilute concentration of static magnetic moments. This finding places severe restrictions on the form of ferromagnetism that may exist in the overdoped regime. Although an extrinsic impurity cannot be absolutely ruled out as the source of the magnetism that does occur, the results presented here lend support to electronic band calculations that predict the occurrence of weak localized ferromagnetism at high doping.Comment: 13 pages, 5 figure
    corecore