20 research outputs found

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΌΠ΅Ρ…ΠΎΠ·Π°Ρ‰ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Ρ‡Π΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² для тСхничСских систСм управлСния

    Get PDF
    The paper focuses on the application of digital adaptive filtering to ensure the noise-free speech channels of control systems. Noise is an extraneous signal, which enters the channel device input together with the speech. The article conducts a comparative analysis of the three adaptation algorithms (LMS, NLMS, RLS) to be useful for noise suppression. At the same time, an adaptive suppression mechanism with two microphones on the speech channel is used.The related publications compared the algorithms by one or two criteria. This paper offers three comparison criteria: computational complexity, quality of noise suppression, and rate of convergence to the steady-state condition. The number of vector operations in algorithm procedures estimates temporary computational complexity.To compare algorithms by the other two criteria, their implementation was simulated in MATLAB. As the noise, were used the white and pink noise, a sine wave, and a model of the non-stationary signal as well. The noise suppression coefficient and the number of iterations before transition to the steady-state condition have been obtained. The algorithm RLS showed the best quality of suppression while the NLMS algorithm revealed the highest rate of convergence. Experiments have shown that the white noise is suppressed worse, but faster than the sine one.The paper explores influence of some factors on the process of adaptation. It is shown that increase in filter dimension leads to improving quality of adaptation and its speed-down. From simulation results it follows that the noise suppression coefficient has the highest values when at the filter input there are approximately equal signal and noise powers.The results allow us to make commendation to use the NLMS algorithm for real-time systems, and the RLS one for technical systems aimed at recordings of speech signals. The above algorithms can be successfully implemented on modern technology platforms, comprising high-performance digital signal processors and associated peripherals.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ для обСспСчСния помСхозащищСнности Ρ€Π΅Ρ‡Π΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ² систСм управлСния, понимая ΠΏΠΎΠ΄ ΠΏΠΎΠΌΠ΅Ρ…ΠΎΠΉ посторонний сигнал, ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠΉ вмСстС с Ρ€Π΅Ρ‡ΡŒΡŽ Π½Π° Π²Ρ…ΠΎΠ΄ канального устройства. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ‚Ρ€Π΅Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ (LMS, NLMS, RLS), ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… для подавлСния ΠΏΠΎΠΌΠ΅Ρ…. ΠŸΡ€ΠΈ этом использован ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ подавлСния с двумя ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΎΠ½Π°ΠΌΠΈ Π² Ρ€Π΅Ρ‡Π΅Π²ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅.Π’ Π±Π»ΠΈΠ·ΠΊΠΈΡ… ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ публикациях сравнСниС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ»ΠΈ Π΄Π²ΡƒΠΌ критСриям. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ критСрия сравнСния: Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ, качСство подавлСния ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ сходимости ΠΊ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡƒΡΡ Ρ€Π΅ΠΆΠΈΠΌΡƒ. ВрСмСнная Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½Π΅Π½Π° ΠΏΠΎ количСству Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ².Для сравнСния Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΏΠΎ Π΄Π²ΡƒΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ критСриям Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² срСдС MATLAB. Π’ качСствС ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π±Π΅Π»Ρ‹ΠΉ ΠΈ Ρ€ΠΎΠ·ΠΎΠ²Ρ‹ΠΉ ΡˆΡƒΠΌΡ‹, ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΉ сигнал, Π° Ρ‚Π°ΠΊΠΆΠ΅ модСль нСстационарного сигнала. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ коэффициСнт подавлСния ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈ число ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π΄ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π² ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΉΡΡ Ρ€Π΅ΠΆΠΈΠΌ. ΠΠ°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π΅ качСство подавлСния ΠΏΠΎΠΊΠ°Π·Π°Π» Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ RLS, Π½Π°ΠΈΠ²Ρ‹ΡΡˆΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ сходимости – Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ NLMS. ΠžΠΏΡ‹Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π±Π΅Π»Ρ‹ΠΉ ΡˆΡƒΠΌ подавляСтся Ρ…ΡƒΠΆΠ΅, Π½ΠΎ быстрСС, Ρ‡Π΅ΠΌ ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠΌΠ΅Ρ…Π°.ИсслСдовано влияниС ряда Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° процСсс Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ. Показано, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ размСрности Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ качСства Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΈ сниТСнию Π΅Π΅ скорости. Из Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² модСлирования слСдуСт, Ρ‡Ρ‚ΠΎ коэффициСнт подавлСния ΠΏΠΎΠΌΠ΅Ρ… ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ наибольшиС значСния, Ссли мощности сигнала ΠΈ ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π½Π° Π²Ρ…ΠΎΠ΄Π΅ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ NLMS для систСм Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ RLS – для тСхничСских систСм, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… с записями Ρ€Π΅Ρ‡Π΅Π²Ρ‹Ρ… сигналов. РассмотрСнныС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π½Π° соврСмСнных тСхничСских ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ°Ρ…, содСрТащих Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ процСссоры ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡŽ

    Technological Basis of the Formation of Micromesh Transparent Electrodes by Means of a Self-Organized Template and the Study of Their Properties

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.This Letter presents the results of a study of the physical properties of micromesh transparent electrodes on a flexible substrate, obtained using a template in the form of silica layers subjected to controlled cracking. For the first time, a combined approach to the control of parameters of a micromesh structure (crack width and cell size) by varying the pH and the thickness of the sol layer is proposed. Using this approach, transparent electrodes with a surface resistance of 4.1 Ξ©/sq with a transparency of 85.7% were obtained. Micromesh electrodes are characterized by linear optical transmission in the visible and IR ranges, which opens up prospects for their use in optoelectronics

    Influence of the Addition of Alumina Nanofibers on the Strength of Epoxy Resins

    No full text
    The paper describes the effect of the addition of alumina nanofibers on the mechanical properties of the epoxy resin. Alumina nanofibers functionalized with epoxypropyl functional groups are used in this work. The dependence of the mechanical characteristics on the amount of the additive, as well as the features of its distribution in the material, is investigated. In the work, nanocomposites were obtained, which are epoxy resin with aluminum oxide nanofibers. The mechanical properties of the samples were studied by bending tests and differential mechanical analysis (DMA). It has been shown that the addition of alumina nanofibers leads to an increase in ultimate flexural strength. The maximum of this increase is near the percolation threshold of alumina nanofibers in epoxy resin. With the addition of 0.2% alumina nanofibers, the ultimate flexural strength increases from 41 to 71 MPa. It is shown that after exceeding the percolation threshold of nanofibers, the ultimate strength decreases. In this case, the elastic modulus increases from 0.643 to 0.862 GPa. DMA is shown that the glass transition temperature decreases with increasing amount of the additive. This indicates a decrease in the molecular weight of the polymer. By implication, this suggests that the hardener connects the epoxypropyl functional groups on the nanofibers and the epoxy groups in the resin, and as a result of this process, the nanofibers become natural polymer chain length limiters. The data obtained from mechanical testing and differential mechanical analysis can be used to strengthen epoxy resins in polymer composite materials and molding compositions

    Influence of the Addition of Alumina Nanofibers on the Strength of Epoxy Resins

    No full text
    The paper describes the effect of the addition of alumina nanofibers on the mechanical properties of the epoxy resin. Alumina nanofibers functionalized with epoxypropyl functional groups are used in this work. The dependence of the mechanical characteristics on the amount of the additive, as well as the features of its distribution in the material, is investigated. In the work, nanocomposites were obtained, which are epoxy resin with aluminum oxide nanofibers. The mechanical properties of the samples were studied by bending tests and differential mechanical analysis (DMA). It has been shown that the addition of alumina nanofibers leads to an increase in ultimate flexural strength. The maximum of this increase is near the percolation threshold of alumina nanofibers in epoxy resin. With the addition of 0.2% alumina nanofibers, the ultimate flexural strength increases from 41 to 71 MPa. It is shown that after exceeding the percolation threshold of nanofibers, the ultimate strength decreases. In this case, the elastic modulus increases from 0.643 to 0.862 GPa. DMA is shown that the glass transition temperature decreases with increasing amount of the additive. This indicates a decrease in the molecular weight of the polymer. By implication, this suggests that the hardener connects the epoxypropyl functional groups on the nanofibers and the epoxy groups in the resin, and as a result of this process, the nanofibers become natural polymer chain length limiters. The data obtained from mechanical testing and differential mechanical analysis can be used to strengthen epoxy resins in polymer composite materials and molding compositions

    Features of Functionalization of the Surface of Alumina Nanofibers by Hydrolysis of Organosilanes on Surface Hydroxyl Groups

    No full text
    Small additions of nanofiber materials make it possible to change the properties of polymers. However, the uniformity of the additive distribution and the strength of its bond with the polymer matrix are determined by the surface of the nanofibers. Silanes, in particular, allow you to customize the surface for better interaction with the matrix. The aim of our work is to study an approach to silanization of nanofibers of aluminum oxide to obtain a perfect interface between the additive and the matrix. The presence of target silanes on the surface of nanofibers was shown by XPS methods. The presence of functional groups on the surface of nanofibers was also shown by the methods of simultaneous thermal analysis, and the stoichiometry of functional groups with respect to the initial hydroxyl groups was studied. The number of functional groups precipitated from silanes is close to the number of the initial hydroxyl groups, which indicates a high uniformity of the coating in the proposed method of silanization. The presented technology for silanizing alumina nanofibers is an important approach to the subsequent use of this additive in various polymer matrices
    corecore