3 research outputs found
ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π²Π½ΡΡΡΠΈΡΠ΅ΡΠ΅ΠΏΠ½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
The motivation for the present study was the need to develop methods of urgent intraoperative biopsy during surgery for removal of intracranial tumors. Based on the experience of previous joint work of GPI RAS and N.N. Burdenko National Medical Research Center of Neurosurgery to introduce fluorescence spectroscopy methods into clinical practice, an approach combiningΒ various optical-spectral techniques, such as autofluorescence spectroscopy, fluorescence of 5-ALA induced protoporphyrin IX, diffuse reflection of broadband light, which can be used to determine hemoglobin concentration in tissues and their optical density, Raman spectroscopy, which is a spectroscopic method that allows detection of various molecules in tissues by vibrations of individual characteristic molecular bonds. Such a variety of optical and spectral characteristics makes it difficult for the surgeon to analyze them directly during surgery, as it is usually realized in the case of fluorescence methods β tumor tissue can be distinguished from normal with a certain degree of certainty by fluorescence intensity exceedingΒ a threshold value. In case the number of parameters exceeds a couple of dozens, it is necessary to use machine learning algorithmsΒ to build a intraoperative decision support system for the surgeon. This paper presents research in this direction. Our earlier statistical analysis of the optical-spectral features allowed identifyingΒ statistically significant spectral ranges for analysis of diagnosticallyΒ important tissue components. Studies of dimensionality reduction techniques of the optical-spectral feature vector and methods of clustering of the studied samples also allowed us to approach the implementationΒ of the automatic classification method. Importantly, the classification task can be used in two applicationsΒ β to differentiate between different tumors and to differentiate between different parts of the same (center, perifocal zone, normal) tumor. This paper presents the results of our research in the first direction. We investigated the combination of several methods and showed the possibility of differentiating glial and meningeal tumors based on the proposed optical-spectral analysis method.ΠΠΎΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΡΠΎΡΠ½ΠΎΠΉ ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π±ΠΈΠΎΠΏΡΠΈΠΈ ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈΡΠ΅ΡΠ΅ΠΏΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡΡΠ° ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΠΠ€ Π ΠΠ ΠΈ ΠΠΠΠ¦ Π½Π΅ΠΉΡΠΎΡ
ΠΈΡΡΡΠ³ΠΈΠΈΒ ΠΈΠΌ. Π.Π. ΠΡΡΠ΄Π΅Π½ΠΊΠΎ ΠΏΠΎ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡ ΠΏΡΠ°ΠΊΡΠΈΠΊΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΡΡΡΠΈΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅Β ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΒ Π°ΡΡΠΎΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ, ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈΒ 5-ΠΠΠ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎΒ ΠΏΡΠΎΡΠΎΠΏΠΎΡΡΠΈΡΠΈΠ½Π°Β IX, Π΄ΠΈΡΡΡΠ·Π½ΠΎΠ³ΠΎΒ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΡΒ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ,Β ΠΏΠΎ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π² ΡΠΊΠ°Π½ΡΡ
ΠΈ ΠΈΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΡΡΒ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ,Β ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ, ΡΠ²Π»ΡΡΡΠ°ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π² ΡΠΊΠ°Π½ΡΡ
Π·Π° ΡΡΠ΅ΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
ΡΠ²ΡΠ·Π΅ΠΉ Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°Ρ
. Π’Π°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΒ Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΠΈΡ
Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ
ΠΈΡΡΡΠ³ΠΎΠΌ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ, ΠΊΠ°ΠΊ ΡΡΠΎ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² β ΠΏΠΎ ΠΏΡΠ΅Π²ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠ³Π° ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ΄ΠΈΡΡ ΠΎ ΡΠΎΠΌ, Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π»ΠΈ Π² Π·ΠΎΠ½Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΠΈΠ»ΠΈ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²Π°Ρ ΡΠΊΠ°Π½Ρ. Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΡΠΈΡΠ»ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΏΠ°ΡΡ Π΄Π΅ΡΡΡΠΊΠΎΠ², Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡΒ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΏΡΠΈΠ½ΡΡΠΈΡΒ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Ρ
ΠΈΡΡΡΠ³Π°Β Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠ°ΡΡΠΎΡΡΠ°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΠ°Π½Π΅Π΅ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉΒ Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½ΡΡ
ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΒ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²ΡΠ΄Π΅Π»ΠΈΡΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΒ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π°, ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠΈΡΡΡΡΠΈΠ΅Β Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΒ Π²Π°ΠΆΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ²Β ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΡΡΡ ΠΊ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π·Π°Π΄Π°ΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π² Π΄Π²ΡΡ
ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
β Π΄Π»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΠΈ Π΄Π»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΠΎΠ΄Π½ΠΎΠΉ (ΡΠ΅Π½ΡΡ, ΠΏΠ΅ΡΠΈΡΠΎΠΊΠ°Π»ΡΠ½Π°Ρ Π·ΠΎΠ½Π°, Π½ΠΎΡΠΌΠ°) ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π½Π°ΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ Π³Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΈ ΠΌΠ΅Π½ΠΈΠ½Π³Π΅Π°Π»ΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
ΠΠ»Π°ΡΡΠ΅ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π² Π½Π΅ΠΉΡΠΎΡ ΠΈΡΡΡΠ³ΠΈΠΈ Π³Π»ΠΈΠ°Π»ΡΠ½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diο¬use reο¬ectance spectra of broadband radiation in the 500β600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), ο¬uorescence spectra of 5βALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reο¬ected laser light used to excite Pp IX ο¬uorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EMβalgorithm and kβmeans methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠ»Π°ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΏΠΎ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ Π³Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ. ΠΠ½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ ΠΊΠ°ΠΊ Π΄Π»Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ Π²ΡΠ΅ΠΉ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π΄Π°Π½Π½ΡΡ
. ΠΠ°Π½Π½ΡΠ΅ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, ΡΠ΅Π³ΠΈΡΡΡΠΈΡΡΡΡΠΈΠΌ ΡΠΏΠ΅ΠΊΡΡ Π΄ΠΈΡΡΡΠ·Π½ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠΏΠ΅ΠΊΡΡΠ° 500β600 Π½ΠΌ (Ρ ΡΠ΅Π»ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΡΠΎΠ²Π΅Π½Π°ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΊΠ°Π½Π΅ΠΉ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠΈ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°), ΡΠΏΠ΅ΠΊΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ 5βΠ°ΠΌΠΈΠ½ΠΎΠ»Π΅Π²ΡΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠΎΠΉ ΠΏΡΠΎΡΠΎΠΏΠΎΡΡΠΈΡΠΈΠ½Π° IX (Ρ ΡΠ΅Π»ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠ°Π½Π΅ΠΉ) ΠΈ ΡΠΈΠ³Π½Π°Π» Π΄ΠΈΡΡΡΠ·Π½ΠΎ ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠ΅Π³ΠΎΡΡ Π΄Π»Ρ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ (Ρ ΡΠ΅Π»ΡΡ ΡΡΠ΅ΡΠ° ΡΠ°ΡΡΠ΅ΠΈΠ²Π°ΡΡΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠΊΠ°Π½Π΅ΠΉ). ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π»Ρ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ, Π·ΠΎΠ½Ρ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° Π±ΡΠ» ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ ΠΏΠΎΠΈΡΠΊ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ² Π² ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΡ ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΠΈΡ
ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΠΏΠ°ΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠ΅Π΄ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΠβΠ°Π»Π³ΠΎΡΠΈΡΠΌ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ kβΡΡΠ΅Π΄Π½ΠΈΡ
ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Ρ Π΄Π»Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ
ΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°ΡΠΈΠΈ Π² Π½Π΅ΠΉΡΠΎΡ
ΠΈΡΡΡΠ³ΠΈΠΈ. Π Π΅Π»Π΅Π²Π°Π½ΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΏΠ°ΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π±ΡΠ»ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π°Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΠΎΡΡΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ
Cluster analysis of the results of intraoperative optical spectroscopic diagnostics In brain glioma neurosurgery
The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diο¬use reο¬ectance spectra of broadband radiation in the 500β600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), ο¬uorescence spectra of 5βALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reο¬ected laser light used to excite Pp IX ο¬uorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EMβalgorithm and kβmeans methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data