3 research outputs found

    ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π½Π° основС ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°

    Get PDF
    The motivation for the present study was the need to develop methods of urgent intraoperative biopsy during surgery for removal of intracranial tumors. Based on the experience of previous joint work of GPI RAS and N.N. Burdenko National Medical Research Center of Neurosurgery to introduce fluorescence spectroscopy methods into clinical practice, an approach combiningΒ  various optical-spectral techniques, such as autofluorescence spectroscopy, fluorescence of 5-ALA induced protoporphyrin IX, diffuse reflection of broadband light, which can be used to determine hemoglobin concentration in tissues and their optical density, Raman spectroscopy, which is a spectroscopic method that allows detection of various molecules in tissues by vibrations of individual characteristic molecular bonds. Such a variety of optical and spectral characteristics makes it difficult for the surgeon to analyze them directly during surgery, as it is usually realized in the case of fluorescence methods – tumor tissue can be distinguished from normal with a certain degree of certainty by fluorescence intensity exceedingΒ  a threshold value. In case the number of parameters exceeds a couple of dozens, it is necessary to use machine learning algorithmsΒ  to build a intraoperative decision support system for the surgeon. This paper presents research in this direction. Our earlier statistical analysis of the optical-spectral features allowed identifyingΒ  statistically significant spectral ranges for analysis of diagnosticallyΒ  important tissue components. Studies of dimensionality reduction techniques of the optical-spectral feature vector and methods of clustering of the studied samples also allowed us to approach the implementationΒ  of the automatic classification method. Importantly, the classification task can be used in two applicationsΒ  – to differentiate between different tumors and to differentiate between different parts of the same (center, perifocal zone, normal) tumor. This paper presents the results of our research in the first direction. We investigated the combination of several methods and showed the possibility of differentiating glial and meningeal tumors based on the proposed optical-spectral analysis method.ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ провСдСния настоящСго исслСдования послуТила Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ развития ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² срочной ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ биопсии ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ удалСния Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. На основании ΠΎΠΏΡ‹Ρ‚Π° ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ совмСстной Ρ€Π°Π±ΠΎΡ‚Ρ‹ ИОЀ РАН ΠΈ НМИЦ Π½Π΅ΠΉΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈΒ  ΠΈΠΌ. Н.Н. Π‘ΡƒΡ€Π΄Π΅Π½ΠΊΠΎ ΠΏΠΎ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΡŽ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² флуорСсцСнтной спСктроскопии Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅Β  ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ спСктроскопия  аутофлуорСсцСнции, флуорСсцСнции  5-ΠΠ›Πš ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎΒ  ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π°Β  IX, Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎΠ³ΠΎΒ  отраТСния  ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ излучСния,Β  ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π² тканях ΠΈ ΠΈΡ… ΠΎΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽΒ  ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ,Β  спСктроскопия  ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ  рассСяния, ΡΠ²Π»ΡΡŽΡ‰Π°ΡΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ молСкулярной спСктроскопии, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π² тканях Π·Π° счСта ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… связСй Π² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°Ρ…. Π’Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик  затрудняСт ΠΈΡ… нСпосрСдствСнный Π°Π½Π°Π»ΠΈΠ· Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΎΠΌ Π²ΠΎ врСмя ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊ это ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ рСализуСтся Π² случаС флуорСсцСнтных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² – ΠΏΠΎ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΠ³Π° интСнсивности флуорСсцСнции с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ достовСрности ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΎ Ρ‚ΠΎΠΌ, находится Π»ΠΈ Π² Π·ΠΎΠ½Π΅ исслСдования Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΈΠ»ΠΈ опухолСвая Ρ‚ΠΊΠ°Π½ΡŒ. Π’ случаС, Ссли число ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΏΠ°Ρ€Ρƒ дСсятков, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ использованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния для построСния  систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ принятия  Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Ρ…ΠΈΡ€ΡƒΡ€Π³Π°Β  Π²ΠΎ врСмя ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Настоящая Ρ€Π°Π±ΠΎΡ‚Π° прСдставляСт исслСдования Π² этом Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π½Π°ΠΌΠΈ Ρ€Π°Π½Π΅Π΅ статистичСский  Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик  ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ статистичСски  Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ‹ для Π°Π½Π°Π»ΠΈΠ·Π°, Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅Β  диагностичСски  Π²Π°ΠΆΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Ρ‚ΠΊΠ°Π½Π΅ΠΉ. ИсслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² пониТСния размСрности Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ²Β  ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² кластСризации исслСдуСмых ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° автоматичСской классификации. Π’Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‡Π° классификации ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована Π² Π΄Π²ΡƒΡ… прилоТСниях – для Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈ для Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… частСй ΠΎΠ΄Π½ΠΎΠΉ (Ρ†Π΅Π½Ρ‚Ρ€, ΠΏΠ΅Ρ€ΠΈΡ„ΠΎΠΊΠ°Π»ΡŒΠ½Π°Ρ Π·ΠΎΠ½Π°, Π½ΠΎΡ€ΠΌΠ°) ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π½Π°ΡˆΠΈΡ… исслСдований Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. ΠœΡ‹ исслСдовали сочСтаниС Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΌΠ΅Π½ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π½Π° основании ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΡ‚ΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°

    ΠšΠ»Π°ΡΡ‚Π΅Ρ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ оптичСской спСктроскопичСской диагностики Π² Π½Π΅ΠΉΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°

    Get PDF
    The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra of broadband radiation in the 500–600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), fluorescence spectra of 5‑ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EM‑algorithm and k‑means methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² кластСрного Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… оптичСской ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ спСктроскопии ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΡŽ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни злокачСствСнности. Анализ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΊΠ°ΠΊ для ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ для всСй совокупности Π΄Π°Π½Π½Ρ‹Ρ…. Π”Π°Π½Π½Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ оптичСской спСктроскопии, Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ спСктр Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎΠ³ΠΎ отраТСния ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ излучСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ спСктра 500–600 Π½ΠΌ (с Ρ†Π΅Π»ΡŒΡŽ Π°Π½Π°Π»ΠΈΠ·Π° кровСнаполнСнности Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΈ стСпСни оксигСнации Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°), спСктр флуорСсцСнции ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ 5‑аминолСвулиновой кислотой ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠΎΡ€Ρ„ΠΈΡ€ΠΈΠ½Π° IX (с Ρ†Π΅Π»ΡŒΡŽ Π°Π½Π°Π»ΠΈΠ·Π° стСпСни измСнСния Ρ‚ΠΊΠ°Π½Π΅ΠΉ) ΠΈ сигнал Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния, использовавшСгося для возбуТдСния флуорСсцСнции (с Ρ†Π΅Π»ΡŒΡŽ ΡƒΡ‡Π΅Ρ‚Π° Ρ€Π°ΡΡΠ΅ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… свойств Ρ‚ΠΊΠ°Π½Π΅ΠΉ). Для опрСдСлСния ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² для ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ, Π·ΠΎΠ½Ρ‹ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ вСщСства Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск СстСствСнных кластСров Π² ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… оптичСской спСктроскопии ΠΈ ΠΈΡ… сопоставлСниС с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ патоморфологичСской экспСртизы. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ срСди рассмотрСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² кластСризации Π•Πœβ€‘Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ k‑срСдних ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ для рассмотрСнного Π½Π°Π±ΠΎΡ€Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для построСния систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ спСктроскопичСской ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Π² Π½Π΅ΠΉΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ. Π Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ патоморфологичСских исслСдований ΠΌΠΎΠ΄Π΅Π»ΠΈ Π±Ρ‹Π»ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Π°Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ кластСризации. Π­Ρ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для постобработки Π΄Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ спСктроскопии

    Cluster analysis of the results of intraoperative optical spectroscopic diagnostics In brain glioma neurosurgery

    Get PDF
    The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra of broadband radiation in the 500–600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), fluorescence spectra of 5‑ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EM‑algorithm and k‑means methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data
    corecore