52 research outputs found
First- and second-order transitions of the escape rate in ferrimagnetic or antiferromagnetic particles
Quantum-classical escape-rate transition has been studied for two general
forms of magnetic anisotropy in ferrimagnetic or antiferromagnetic particles.
It is found that the range of the first-order transition is greatly reduced as
the system becomes ferrimagnetic and there is no first-order transition in
almost compensated antiferromagnetic particles. These features can be tested
experimentally in nanomagnets like molecular magnets.Comment: 11 pages, 3 figures, to appear in Europhys. Let
D-brane categories
This is an exposition of recent progress in the categorical approach to
D-brane physics. I discuss the physical underpinnings of the appearance of
homotopy categories and triangulated categories of D-branes from a string field
theoretic perspective, and with a focus on applications to homological mirror
symmetry.Comment: 37 pages, IJMPA styl
Chirality tunneling in mesoscopic antiferromagnetic domain walls
We consider a domain wall in the mesoscopic quasi-one-dimensional sample
(wire or stripe) of weakly anisotropic two-sublattice antiferromagnet, and
estimate the probability of tunneling between two domain wall states with
different chirality. Topological effects forbid tunneling for the systems with
half-integer spin S of magnetic atoms which consist of odd number of chains N.
External magnetic field yields an additional contribution to the Berry phase,
resulting in the appearance of two different tunnel splittings in any
experimental setup involving a mixture of odd and even N, and in oscillating
field dependence of the tunneling rate with the period proportional to 1/N.Comment: 4 pages + 2 figures, references correcte
Macroscopic quantum coherence in mesoscopic ferromagnetic systems
In this paper we study the Macroscopic Quantum Oscillation (MQO) effect in
ferromagnetic single domain magnets with a magnetic field applied along the
hard anistropy axis. The level splitting for the ground state, derived with the
conventional instanton method, oscillates with the external field and is
quenched at some field values. A formula for quantum tunneling at excited
levels is also obtained. The existence of topological phase accounts for this
kind of oscillation and the corresponding thermodynamical quantities exhibit
similar interference effects which resembles to some extent the electron
quantum phase interference induced by gauge potential in the Aharonov-Bohm
effect and the -vacuum in Yang-Mills field theory..Comment: 12 pages, 4 figures, to appear in Phys. Rev.
THE EFFECT OF THE RATIO OF THE ELASTIC MODULES OF THE "GRAVITY CONCRETE DAM - FOUNDATION" SYSTEM UPON STRESS CONCENTRATION IN THE CONTACT ZONE, AND DISPLACEMENTS OF ADJACENT DAM SECTIONS
The effect of the ratio of the elastic module of the "gravity concrete dam - foundation" upon stress concentrations occurring in the contact zone, and displacement on adjacent sections are considered by means of modern CAD FEM software packag
- …