22,249 research outputs found
Is it possible to accommodate massive photons in the framework of a gauge-invariant electrodynamics?
The construction of an alternative electromagnetic theory that preserves
Lorentz and gauge symmetries, is considered. We start off by building up
Maxwell electrodynamics in (3+1)D from the assumption that the associated
Lagrangian is a gauge-invariant functional that depends on the electron and
photon fields and their first derivatives only. In this scenario, as
well-known, it is not possible to set up a Lorentz invariant gauge theory
containing a massive photon. We show nevertheless that there exist two
radically different electrodynamics, namely, the Chern-Simons and the Podolsky
formulations, in which this problem can be overcome. The former is only valid
in odd space-time dimensions, while the latter requires the presence of
higher-order derivatives of the gauge field in the Lagrangian. This theory,
usually known as Podolsky electrodynamics, is simultaneously gauge and Lorentz
invariant; in addition, it contains a massive photon. Therefore, a massive
photon, unlike the popular belief, can be adequately accommodated within the
context of a gauge-invariant electrodynamics.Comment: 10 page
Cosmic Sculpture: A new way to visualise the Cosmic Microwave Background
3D printing presents an attractive alternative to visual representation of
physical datasets such as astronomical images that can be used for research,
outreach or teaching purposes, and is especially relevant to people with a
visual disability. We here report the use of 3D printing technology to produce
a representation of the all-sky Cosmic Microwave Background (CMB) intensity
anisotropy maps produced by the Planck mission. The success of this work in
representing key features of the CMB is discussed as is the potential of this
approach for representing other astrophysical data sets. 3D printing such
datasets represents a highly complementary approach to the usual 2D projections
used in teaching and outreach work, and can also form the basis of
undergraduate projects. The CAD files used to produce the models discussed in
this paper are made available.Comment: Accepted for publication in the European Journal of Physic
Multiobjective analysis for the design and control of an electromagnetic valve actuator
The electromagnetic valve actuator can deliver much improved fuel efficiency and reduced emissions in spark ignition (SI) engines owing to the potential for variable valve timing when compared with cam-operated, or conventional, variable valve strategies. The possibility exists to reduce pumping losses by throttle-free operation, along with closed-valve engine braking. However, further development is required to make the technology suitable for accept- ance into the mass production market. This paper investigates the application of multiobjective optimization techniques to the conflicting objective functions inherent in the operation of such a device. The techniques are utilized to derive the optimal force–displacement characteristic for the solenoid actuator, along with its controllability and dynamic/steady state performance
Low-momentum interactions in three- and four-nucleon scattering
Low momentum two-nucleon interactions obtained with the renormalization group
method and the similarity renormalization group method are used to study the
cutoff dependence of low energy 3N and 4N scattering observables. The residual
cutoff dependence arises from omitted short-ranged 3N (and higher) forces that
are induced by the renormalization group transformations, and may help to
estimate the sensitivity of various 3N and 4N scattering observables to
short-ranged many-body forces.Comment: 5 pages, 8 figures, to be published in Phys. Rev.
The ion motion in self-modulated plasma wakefield accelerators
The effects of plasma ion motion in self-modulated plasma based accelerators
is examined. An analytical model describing ion motion in the narrow beam limit
is developed, and confirmed through multi-dimensional particle-in-cell
simulations. It is shown that the ion motion can lead to the early saturation
of the self-modulation instability, and to the suppression of the accelerating
gradients. This can reduce the total energy that can be transformed into
kinetic energy of accelerated particles. For the parameters of future
proton-driven plasma accelerator experiments, the ion dynamics can have a
strong impact. Possible methods to mitigate the effects of the ion motion in
future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
Ion dynamics and acceleration in relativistic shocks
Ab-initio numerical study of collisionless shocks in electron-ion
unmagnetized plasmas is performed with fully relativistic particle in cell
simulations. The main properties of the shock are shown, focusing on the
implications for particle acceleration. Results from previous works with a
distinct numerical framework are recovered, including the shock structure and
the overall acceleration features. Particle tracking is then used to analyze in
detail the particle dynamics and the acceleration process. We observe an energy
growth in time that can be reproduced by a Fermi-like mechanism with a reduced
number of scatterings, in which the time between collisions increases as the
particle gains energy, and the average acceleration efficiency is not ideal.
The in depth analysis of the underlying physics is relevant to understand the
generation of high energy cosmic rays, the impact on the astrophysical shock
dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure
Very High Mach Number Electrostatic Shocks in Collisionless Plasmas
The kinetic theory of collisionless electrostatic shocks resulting from the
collision of plasma slabs with different temperatures and densities is
presented. The theoretical results are confirmed by self-consistent
particle-in-cell simulations, revealing the formation and stable propagation of
electrostatic shocks with very high Mach numbers (), well above the
predictions of the classical theories for electrostatic shocks.Comment: 6 pages, submitted to Phys. Rev. Let
A global simulation for laser driven MeV electrons in -diameter fast ignition targets
The results from 2.5-dimensional Particle-in-Cell simulations for the
interaction of a picosecond-long ignition laser pulse with a plasma pellet of
50- diameter and 40 critical density are presented. The high density
pellet is surrounded by an underdense corona and is isolated by a vacuum region
from the simulation box boundary. The laser pulse is shown to filament and
create density channels on the laser-plasma interface. The density channels
increase the laser absorption efficiency and help generate an energetic
electron distribution with a large angular spread. The combined distribution of
the forward-going energetic electrons and the induced return electrons is
marginally unstable to the current filament instability. The ions play an
important role in neutralizing the space charges induced by the the temperature
disparity between different electron groups. No global coalescing of the
current filaments resulted from the instability is observed, consistent with
the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006
- …