50,501 research outputs found

    Quantum criticality out of equilibrium in the pseudogap Kondo model

    Full text link
    We theoretically investigate the non-equilibrium quantum phase transition in a generic setup: the pseudogap Kondo model where a quantum dot couples to two-left (L) and right (R)-voltage-biased fermionic leads with power-law density of states (DOS) with respect to their Fermi levels {\mu}_L/R, {\rho}_c,L(R) ({\omega}) \propto |{\omega} - {\mu}_L(R) |r, and 0 < r < 1. In equilibrium (zero bias voltage) and for 0 < r < 1/2, with increasing Kondo correlations, in the presence of particle-hole symmetry this model exhibits a quantum phase transition from a unscreened local moment (LM) phase to the Kondo phase. Via a controlled frequency-dependent renormalization group (RG) approach, we compute analytically and numerically the non-equilibrium conductance, conduction electron T-matrix and local spin susceptibility at finite bias voltages near criticality. The current-induced decoherence shows distinct nonequilibrium scaling, leading to new universal non-equilibrium quantum critical behaviors in the above observables. Relevance of our results for the experiments is discussed.Comment: 4.1 pages, 2 figure

    Cartan calculi on the quantum superplane

    Full text link
    Cartan calculi on the extended quantum superplane are given. To this end, the noncommutative differential calculus on the extended quantum superplane is extended by introducing inner derivations and Lie derivatives

    Trusted Hands: The Role of Community-Based Organizations in Enrolling Children in Public Health Insurance Programs

    Get PDF
    Trusted Hand is a new approach to enrolling traditionally hard-to-reach children in public health insurance programs. While the most common locations for enrollment assistance are state and local social service agencies and health clinics, many states are increasing their network to include a variety of community-based organizations that typically have not been involved in public health insurance. This Issue Brief, prepared by researchers at the University of Colorado Denver, details the advantages, as well as the challenges of this promising new strategy

    The Neural Encoding of Cocaine-Induced Devaluation in The Ventral Pallidum

    Get PDF
    Cocaine experience affects motivation structures such as the nucleus accumbens (NAc) and its major output target, the ventral pallidum (VP). Previous studies demonstrated that both NAc activity and hedonic responses change reliably as a taste cue comes to predict cocaine availability. Here we extended this investigation to examine drug-experience induced changes in hedonic encoding in the VP. VP activity was first characterized in adult male Sprague–Dawley rats in response to intraoral infusions of palatable saccharin and unpalatable quinine solutions. Next, rats received 7 daily pairings of saccharin that predicted either a cocaine (20 mg/kg, ip) or saline injection. Finally, the responses to saccharin and quinine were again assessed. Of 109 units recorded in 11 rats that received saccharin–cocaine pairings, 71% of responsive units significantly reduced firing rate during saccharin infusions and 64% increased firing rate during quinine exposure. However, as saccharin came to predict cocaine, and elicited aversive taste reactivity, VP responses changed to resemble quinine. After conditioning, 70% of saccharin-responsive units increased firing rate. Most units that encoded the palatable taste (predominantly reduced firing rate) were located in the anterior VP, while most units that were responsive to aversive tastes were located in the posterior VP. This study reveals an anatomical complexity to the nature of hedonic encoding in the VP

    Searching for Colorons at the Large Hadron Collider

    Full text link
    We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN Large Hadron Collider with s=14\sqrt{s} = 14 TeV. A phenomenological Lagrangian is adopted to evaluate the cross section of a pair of colored vector bosons (colorons, ρ~\tilde{\rho}) decaying into four colored scalar resonances (hyper-pions, π~\tilde{\pi}), which then decay into eight gluons. We include the dominant physics background from the production of 8g,7g1q,6g2q8g,7g1q, 6g2q, and 5g3q5g3q, and determine the masses of π~\tilde{\pi} and ρ~\tilde{\rho} where discovery is possible. For example, we find that a 5σ\sigma signal can be established for M_{\tilde{\pi}} \alt 495 GeV (M_{\tilde{\rho}} \alt 1650 GeV). More generally we give the reach of this process for a selection of possible cuts and integrated luminosities.Comment: REVTEX, 20 pages, 16 figure

    Extraction of nuclear matter properties from nuclear masses by a model of equation of state

    Get PDF
    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei. It is shown that the volume energy a1a_1 and the nuclear incompressibility K0K_0 depend essentially on μnN+μˉpZ2EN\mu_n N+\bar{\mu}_p Z-2E_N, whereas the symmetry energy JJ and the density symmetry coefficient LL as well as symmetry incompressibility KsK_s depend essentially on μnμˉp\mu_n-\bar{\mu}_p, where μˉp=μpEC/Z\bar{\mu}_p=\mu_p-\partial E_C/\partial Z, μn\mu_n and μp\mu_p are the neutron and proton chemical potentials respectively, ENE_N the nuclear energy, and ECE_C the Coulomb energy. The obtained symmetry energy is J=28.5MeVJ=28.5MeV, while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.Comment: 12 pages and 7 figure

    Non-equilibrium spatial distribution of Rashba spin torque in ferromagnetic metal layer

    Full text link
    We study the spatial distribution of spin torque induced by a strong Rashba spin-orbit coupling (RSOC) in a ferromagnetic (FM) metal layer, using the Keldysh non-equilibrium Green's function method. In the presence of the s-d interaction between the non-equilibrium conduction electrons and the local magnetic moments, the RSOC effect induces a torque on the moments, which we term as the Rashba spin torque. A correlation between the Rashba spin torque and the spatial spin current is presented in this work, clearly mapping the spatial distribution of Rashba Spin torque in a nano-sized ferromagnetic device. When local magnetism is turned on, the out-of-plane (Sz) Spin Hall effect (SHE) is disrupted, but rather unexpectedly an in-plane (Sy) SHE is detected. We also study the effect of Rashba strength (\alpha_R) and splitting exchange (\Delta) on the non-equilibrium Rashba spin torque averaged over the device. Rashba spin torque allows an efficient transfer of spin momentum such that a typical switching field of 20 mT can be attained with a low current density of less than 10^6 A/cm^2

    Erratum: Dynamics and scaling in a quantum spin chain material with bond randomness

    Full text link
    Follow-up neutron measurements, performed on a sample much larger than the one used in the original study, show that in the energy range 0.5-45 meV the magnetic excitations in BaCu2SiGeO7 are indistinguishable from those in conventional (disorder-free) quantum S=1/2 chains. Scrutinizing the previous data, we found that the analysis was affected by a poorly identified structured background and an additional technical mistake in the data reduction.Comment: This is a complete withdrawal of the original paper, also published as in Phys. Rev. Lett 93, 077206 (2004). One page, one figur
    corecore