444 research outputs found
Investigation of flame stretch in turbulent lifted jet flame
DNS data of a laboratory-scale turbulent lifted hydrogen jet flame has been analysed
to show that this flame has mixed mode combustion not only at the flame base but also
in downstream locations. The mixed mode combustion is observed in instantaneous
structures as in earlier studies and in averaged structure, in which the predominant
mode is found to be premixed combustion with varying equivalence ratio. The nonpremixed
combustion in the averaged structure is observed only in a narrow region
at the edge of the jet shear layer. The analyses of flame stretch show large probability
for negative flame stretch leading to negative surface averaged flame stretch. The
displacement speed-curvature correlation is observed to be negative contributing to
the negative flame stretch and partial premixing resulting from jet entrainment acts to
reduce the negative correlation. The contribution of turbulent straining to the flame
stretch is observed to be negative when the scalar gradient aligns with the most extensive
principal strain rate. The physics behind the negative flame stretch resulting from
turbulent straining is discussed and elucidated through a simple analysis of the flame
surface density transport equation.The authors are grateful for the inspiring discussion with Prof. K.N.C. Bray, and
financial support from Mitsubishi Heavy Industries (MHI) is gratefully acknowledged.
A part of this work is performed under the collaborative research between Cambridge
University and JAXA.This is an Accepted Manuscript of an article published by Taylor & Francis in Combustion Science and Technology on 24 February 2014, available online: http://wwww.tandfonline.com/10.1080/00102202.2013.877335
The MAGIC Telescope and the Observation of Gamma Ray Bursts
The MAGIC Telescope, now taking data with an energy threshold well below 100
GeV, will soon be able to take full advantage of the fast slewing capability of
its altazimuthal mount. Exploiting the link with the GCN network, the MAGIC
Telescope could be one of the first ground-based experiments able to see the
prompt emission of Gamma Ray Bursts in the few tens of GeV region.Comment: 4 pages, 1 figure (-> 3 subfigures), class file (cimento.cls)
included. To appear in: "Gamma-Ray Bursts in the Afterglow Era: 4rd
Workshop", Rome 200
Cosmological test of the Yilmaz theory of gravity
We test the Yilmaz theory of gravitation by working out the corresponding
Friedmann-type equations generated by assuming the Friedmann-Robertson-Walker
cosmological metrics. In the case that space is flat the theory is consistent
only with either a completely empty universe or a negative energy vacuum that
decays to produce a constant density of matter. In both cases the total energy
remains zero at all times, and in the latter case the acceleration of the
expansion is always negative. To obtain a more flexible and potentially more
realistic cosmology, the equation of state relating the pressure and energy
density of the matter creation process must be different from the vacuum, as
for example is the case in the steady-state models of Gold, Bondi, Hoyle and
others. The theory does not support the cosmological principle for curved space
K =/= 0 cosmological metrics
GRB 050713A: High Energy Observations of the GRB Prompt and Afterglow Emission
Swift discovered GRB 050713A and slewed promptly to begin observing with its
narrow field instruments 72.6 seconds after the burst onset, while the prompt
gamma-ray emission was still detectable in the BAT. Simultaneous emission from
two flares is detected in the BAT and XRT. This burst marks just the second
time that the BAT and XRT have simultaneously detected emission from a burst
and the first time that both instruments have produced a well sampled,
simultaneous dataset covering multiple X-ray flares. The temporal rise and
decay parameters of the flares are consistent with the internal shock
mechanism. In addition to the Swift coverage of GRB 050713A, we report on the
Konus-Wind (K-W) detection of the prompt emission in the energy range 18-1150
keV, an upper limiting GeV measurement of the prompt emission made by the MAGIC
imaging atmospheric Cherenkov telescope and XMM-Newton observations of the
afterglow. Simultaneous observation between Swift XRT and XMM-Newton produce
consistent results, showing a break in the lightcurve at T+~15ks. Together,
these four observatories provide unusually broad spectral coverage of the
prompt emission and detailed X-ray follow-up of the afterglow for two weeks
after the burst trigger. Simultaneous spectral fits of K-W with BAT and BAT
with XRT data indicate that an absorbed broken powerlaw is often a better fit
to GRB flares than a simple absorbed powerlaw. These spectral results together
with the rapid temporal rise and decay of the flares suggest that flares are
produced in internal shocks due to late time central engine activity.Comment: 22 pages, 6 tables, 10 figures; Submitted to the Astrophysical
Journa
Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain
AbstractBackground: The purine repressor (PurR) regulates genes that encode enzymes for purine biosynthesis. PurR has a two domain structure with an N-terminal DNA-binding domain (DBD) and a C-terminal corepressor-binding domain (CBD). The three-dimensional structure of a ternary complex of PurR bound to both corepressor and a specific DNA sequence has recently been determined by X-ray crystallography.Results We have determined the solution structure of the PurR DBD by NMR. It contains three helices, with the first and second helices forming a helix-turn-helix motif. The tertiary structure of the three helices is very similar to that of the corresponding region in the ternary complex. The structure of the hinge helical region, however, which makes specific base contacts in the minor groove of DNA, is disordered in the DNA-free form.Conclusion The stable formation of PurR hinge helices requires PurR dimerization, which brings the hinge regions proximal to each other. The dimerization of the hinge helices is likely to be controled by the CBD dimerization interface, but is induced by specific-DNA binding
Validation of Stratospheric and Mesospheric Ozone Observed by SMILES from International Space Station
We observed ozone O3 in the vertical region between 250 and 0.0005 hPa (~ 12-96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100-0.001 hPa (~ 16-90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3-4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40-1, 80-0.1, and 100-0.004 hPa pressure regions, respectively. SMILES O-3 abundance was 10-20% lower than all other satellite measurements at 8-0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
- …