46 research outputs found

    Use of a trabecular metal implant in ankle arthrodesis after failed total ankle replacement: A short-term follow-up of 13 patients

    Get PDF
    Patients and methods 13 patients with a migrated or loose total ankle implant underwent arthrodesis with the use of a retrograde intramedullary nail through a trabecular metal Tibial Cone. The mean follow-up time was 1.4 (0.6-3.4) years. Results At the last examination, 7 patients were pain-free, while 5 had some residual pain but were satisfied with the procedure. 1 patient was dissatisfied and experienced pain and swelling when walking. The implant-bone interfaces showed no radiographic zones or gaps in any patient, indicating union. Interpretation The method is a new way of simplifying and overcoming some of the problems of performing arthrodesis after failed total ankle replacement

    A gradient-based multiaxial criterion for fatigue crack initiation prediction in components with surface roughness

    No full text
    The current study presents methods to predict the governing crack initiation site and fatigue crack initiation life of components with surface roughness. The surface topography is measured with white light interferometry and explicitly accounted for in detailed finite element models. The micro-notch stress fields are used in multiaxial and uniaxial crack initiation criteria where the relative stress gradient is included. The numerical predictions are compared with test results for cylindrical aluminum specimens with axi-symmetric surface roughness. Damage parameters based on the average stress fields over a certain distance were found to be highest in the micro-notches where cracks grew to failure. Lifetime predictions using a multiaxial damage criterion with a gradient correction and elastic-plastic stress fields showed good correlation with the experiments. Uniaxial criteria, criteria without gradient correction, and criteria based on linear elastic stress fields were found to be overly conservative. In some specimens, the failure location could not be identified by the proposed damage criterion. This is likely due to the presence of microstructural weaknesses near the micro-notches, leading to shorter initiation lives that cannot be described by geometry alone. It is concluded that resolving the detailed surface topography and accounting for this geometry in a detailed finite element model provide a predictive approach when multiaxial stresses are accounted for, but the importance of microstructure needs further attention.submittedVersionThis is a submitted manuscript of an article published by Elsevier Ltd in International Journal of Fatigue, 20 August 2018

    A gradient-based multiaxial criterion for fatigue crack initiation prediction in components with surface roughness

    No full text
    The current study presents methods to predict the governing crack initiation site and fatigue crack initiation life of components with surface roughness. The surface topography is measured with white light interferometry and explicitly accounted for in detailed finite element models. The micro-notch stress fields are used in multiaxial and uniaxial crack initiation criteria where the relative stress gradient is included. The numerical predictions are compared with test results for cylindrical aluminum specimens with axi-symmetric surface roughness. Damage parameters based on the average stress fields over a certain distance were found to be highest in the micro-notches where cracks grew to failure. Lifetime predictions using a multiaxial damage criterion with a gradient correction and elastic-plastic stress fields showed good correlation with the experiments. Uniaxial criteria, criteria without gradient correction, and criteria based on linear elastic stress fields were found to be overly conservative. In some specimens, the failure location could not be identified by the proposed damage criterion. This is likely due to the presence of microstructural weaknesses near the micro-notches, leading to shorter initiation lives that cannot be described by geometry alone. It is concluded that resolving the detailed surface topography and accounting for this geometry in a detailed finite element model provide a predictive approach when multiaxial stresses are accounted for, but the importance of microstructure needs further attention

    Distribution of carabid beetles in four boreal archipelagoes

    No full text

    Information and the Kullback Distance

    No full text
    corecore