324,815 research outputs found

    Efficient implementation of the adaptive scale pixel decomposition algorithm

    Full text link
    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used on image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims. However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computing cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods. As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results.The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.Comment: 6 pages; 4 figure

    Continuous-variable multipartite unlockable bound entangled Gaussian states

    Full text link
    Continuous-variable (CV) multipartite unlockable bound-entangled states is investigated in this paper. Comparing with the qubit multipartite unlockable bound-entangled states, CV multipartite unlockable bound-entangled states present the new and different properties. CV multipartite unlockable bound-entangled states may serve as a useful quantum resource for new multiparty communication schemes. The experimental protocol for generating CV unlockable bound-entangled states is proposed with a setup that is at present accessible.Comment: 6 pages, 4 figure

    Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    Get PDF
    In the widely-studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=\omega_2/\omega_1=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=\omega_2/\omega_1=1:4 and 2:3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multi-wave mixing theory, but support the gas-ionization model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure

    The Galactic distribution of magnetic fields in molecular clouds and HII regions

    Get PDF
    {Magnetic fields exist on all scales in our Galaxy. There is a controversy about whether the magnetic fields in molecular clouds are preserved from the permeated magnetic fields in the interstellar medium (ISM) during cloud formation. We investigate this controversy using available data in the light of the newly revealed magnetic field structure of the Galactic disk obtained from pulsar rotation measures (RMs).} % {We collected measurements of the magnetic fields in molecular clouds, including Zeeman splitting data of OH masers in clouds and OH or HI absorption or emission lines of clouds themselves.} % {The Zeeman data show structures in the sign distribution of the line-of-sight component of the magnetic field. Compared to the large-scale Galactic magnetic fields derived from pulsar RMs, the sign distribution of the Zeeman data shows similar large-scale field reversals. Previous such examinations were flawed in the over-simplified global model used for the large-scale magnetic fields in the Galactic disk.} % {We conclude that the magnetic fields in the clouds may still ``remember'' the directions of magnetic fields in the Galactic ISM to some extent, and could be used as complementary tracers of the large-scale magnetic structure. More Zeeman data of OH masers in widely distributed clouds are required.}Comment: Typo fixed in this new versio
    corecore