8,910 research outputs found

    Bright-like soliton solution in quasi-one-dimensional BEC in third order on interaction radius

    Full text link
    Nonlinear Schr\"{o}dinger equations and corresponding quantum hydrodynamic (QHD) equations are widely used in studying ultracold boson-fermion mixtures and superconductors. In this article, we show that a more exact account of interaction in Bose-Einstein condensate (BEC), in comparison with the Gross-Pitaevskii (GP) approximation, leads to the existence of a new type of solitons. We use a set of QHD equations in the third order by the interaction radius (TOIR), which corresponds to the GP equation in a first order by the interaction radius. The solution for the soliton in a form of expression for the particle concentration is obtained analytically. The conditions of existence of the soliton are studied. It is shown what solution exists if the interaction between the particles is repulsive. Particle concentration of order of 101210^{12}-101410^{14} cm−3cm^{-3} has been achieved experimentally for the BEC, the solution exists if the scattering length is of the order of 1 ÎŒ\mum, which can be reached using the Feshbach resonance. It is one of the limit case of existence of new solution. The corresponding scattering length decrease with the increasing of concentration of particles. The investigation of effects in the TOIR approximation gives a more detail information on interaction potentials between the atoms and can be used for a more detail investigation into the potential structure.Comment: 7 pages, 3 figure

    Semiclassical Approach to Competing Orders in Two-leg Spin Ladder with Ring-Exchange

    Full text link
    We investigate the competition between different orders in the two-leg spin ladder with a ring-exchange interaction by means of a bosonic approach. The latter is defined in terms of spin-1 hardcore bosons which treat the N\'eel and vector chirality order parameters on an equal footing. A semiclassical approach of the resulting model describes the phases of the two-leg spin ladder with a ring-exchange. In particular, we derive the low-energy effective actions which govern the physical properties of the rung-singlet and dominant vector chirality phases. As a by-product of our approach, we reveal the mutual induction phenomenon between spin and chirality with, for instance, the emergence of a vector-chirality phase from the application of a magnetic field in bilayer systems coupled by four-spin exchange interactions.Comment: 15 pages, 9 figure

    Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement

    Full text link
    Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled successfully using a zero-range delta-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D fermions under external harmonic confinement interacting through a zero-range potential, which only acts on odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two spin-polarized 3D fermions under harmonic confinement. Our pseudo-potential treatments are verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004

    Re-entrant localization of single particle transport in disordered Andreev wires

    Full text link
    We study effects of disorder on the low energy single particle transport in a normal wire surrounded by a superconductor. We show that the heat conductance includes the Andreev diffusion decreasing with increase in the mean free path ℓ\ell and the diffusive drift produced by a small particle-hole asymmetry, which increases with increasing ℓ\ell. The conductance thus has a minimum as a function of ℓ\ell which leads to a peculiar re-entrant localization as a function of the mean free path.Comment: 4 pages, 2 figure

    A quantum hydrodynamics approach to the formation of new types of waves in polarized two-dimension systems of charged and neutral particles

    Full text link
    In this paper we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Though we focused primarily on the two-dimension physical systems, the method is valid for three-dimension and one-dimension systems too. The presented method is based upon the Schr\"{o}dinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schr\"{o}dinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimension (2D) ion and hole gas placed into an external electric field which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma and 2D electron-hole plasma. Generation of waves in 3D system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.Comment: 15 pages, 7 figure
    • 

    corecore