83 research outputs found

    A note on Verhulst's logistic equation and related logistic maps

    Get PDF
    We consider the Verhulst logistic equation and a couple of forms of the corresponding logistic maps. For the case of the logistic equation we show that using the general Riccati solution only changes the initial conditions of the equation. Next, we consider two forms of corresponding logistic maps reporting the following results. For the map x_{n+1} = rx_n(1 - x_n) we propose a new way to write the solution for r = -2 which allows better precision of the iterative terms, while for the map x_{n+1}-x_n = rx_n(1 - x_{n+1}) we show that it behaves identically to the logistic equation from the standpoint of the general Riccati solution, which is also provided herein for any value of the parameter r.Comment: 6 pages, 3 figures, 7 references with title

    On convergence towards a self-similar solution for a nonlinear wave equation - a case study

    Full text link
    We consider the problem of asymptotic stability of a self-similar attractor for a simple semilinear radial wave equation which arises in the study of the Yang-Mills equations in 5+1 dimensions. Our analysis consists of two steps. In the first step we determine the spectrum of linearized perturbations about the attractor using a method of continued fractions. In the second step we demonstrate numerically that the resulting eigensystem provides an accurate description of the dynamics of convergence towards the attractor.Comment: 9 pages, 5 figure

    Bohl-Perron type stability theorems for linear difference equations with infinite delay

    Full text link
    Relation between two properties of linear difference equations with infinite delay is investigated: (i) exponential stability, (ii) \l^p-input \l^q-state stability (sometimes is called Perron's property). The latter means that solutions of the non-homogeneous equation with zero initial data belong to \l^q when non-homogeneous terms are in \l^p. It is assumed that at each moment the prehistory (the sequence of preceding states) belongs to some weighted \l^r-space with an exponentially fading weight (the phase space). Our main result states that (i) \Leftrightarrow (ii) whenever (p,q)(1,)(p,q) \neq (1,\infty) and a certain boundedness condition on coefficients is fulfilled. This condition is sharp and ensures that, to some extent, exponential and \l^p-input \l^q-state stabilities does not depend on the choice of a phase space and parameters pp and qq, respectively. \l^1-input \l^\infty-state stability corresponds to uniform stability. We provide some evidence that similar criteria should not be expected for non-fading memory spaces.Comment: To be published in Journal of Difference Equations and Application

    Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction of the lattice potential KdV

    Full text link
    We consider multiple lattices and functions defined on them. We introduce slow varying conditions for functions defined on the lattice and express the variation of a function in terms of an asymptotic expansion with respect to the slow varying lattices. We use these results to perform the multiple--scale reduction of the lattice potential Korteweg--de Vries equation.Comment: 17 pages. 1 figur

    Moment inversion problem for piecewise D-finite functions

    Full text link
    We consider the problem of exact reconstruction of univariate functions with jump discontinuities at unknown positions from their moments. These functions are assumed to satisfy an a priori unknown linear homogeneous differential equation with polynomial coefficients on each continuity interval. Therefore, they may be specified by a finite amount of information. This reconstruction problem has practical importance in Signal Processing and other applications. It is somewhat of a ``folklore'' that the sequence of the moments of such ``piecewise D-finite''functions satisfies a linear recurrence relation of bounded order and degree. We derive this recurrence relation explicitly. It turns out that the coefficients of the differential operator which annihilates every piece of the function, as well as the locations of the discontinuities, appear in this recurrence in a precisely controlled manner. This leads to the formulation of a generic algorithm for reconstructing a piecewise D-finite function from its moments. We investigate the conditions for solvability of the resulting linear systems in the general case, as well as analyze a few particular examples. We provide results of numerical simulations for several types of signals, which test the sensitivity of the proposed algorithm to noise

    On the universality of the Discrete Nonlinear Schroedinger Equation

    Full text link
    We address the universal applicability of the discrete nonlinear Schroedinger equation. By employing an original but general top-down/bottom-up procedure based on symmetry analysis to the case of optical lattices, we derive the most widely applicable and the simplest possible model, revealing that the discrete nonlinear Schroedinger equation is ``universally'' fit to describe light propagation even in discrete tensorial nonlinear systems and in the presence of nonparaxial and vectorial effects.Comment: 6 Pages, to appear in Phys. Rev.

    Quadratic fermionic interactions yield effective Hamiltonians for adiabatic quantum computing

    Full text link
    Polynomially-large ground-state energy gaps are rare in many-body quantum systems, but useful for adiabatic quantum computing. We show analytically that the gap is generically polynomially-large for quadratic fermionic Hamiltonians. We then prove that adiabatic quantum computing can realize the ground states of Hamiltonians with certain random interactions, as well as the ground states of one, two, and three-dimensional fermionic interaction lattices, in polynomial time. Finally, we use the Jordan-Wigner transformation and a related transformation for spin-3/2 particles to show that our results can be restated using spin operators in a surprisingly simple manner. A direct consequence is that the one-dimensional cluster state can be found in polynomial time using adiabatic quantum computing.Comment: 14 page

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    Consistency Conditions for Fundamentally Discrete Theories

    Full text link
    The dynamics of physical theories is usually described by differential equations. Difference equations then appear mainly as an approximation which can be used for a numerical analysis. As such, they have to fulfill certain conditions to ensure that the numerical solutions can reliably be used as approximations to solutions of the differential equation. There are, however, also systems where a difference equation is deemed to be fundamental, mainly in the context of quantum gravity. Since difference equations in general are harder to solve analytically than differential equations, it can be helpful to introduce an approximating differential equation as a continuum approximation. In this paper implications of this change in view point are analyzed to derive the conditions that the difference equation should satisfy. The difference equation in such a situation cannot be chosen freely but must be derived from a fundamental theory. Thus, the conditions for a discrete formulation can be translated into conditions for acceptable quantizations. In the main example, loop quantum cosmology, we show that the conditions are restrictive and serve as a selection criterion among possible quantization choices.Comment: 33 page

    Discrete Determinants and the Gel'fand-Yaglom formula

    Full text link
    I present a partly pedagogic discussion of the Gel'fand-Yaglom formula for the functional determinant of a one-dimensional, second order difference operator, in the simplest settings. The formula is a textbook one in discrete Sturm-Liouville theory and orthogonal polynomials. A two by two matrix approach is developed and applied to Robin boundary conditions. Euler-Rayleigh sums of eigenvalues are computed. A delta potential is introduced as a simple, non-trivial example and extended, in an appendix, to the general case. The continuum limit is considered in a non--rigorous way and a rough comparison with zeta regularised values is made. Vacuum energies are also considered in the free case. Chebyshev polynomials act as free propagators and their properties are developed using the two-matrix formulation, which has some advantages and appears to be novel. A trace formula, rather than a determinant one, is derived for the Gel'fand-Yaglom function.Comment: 29 pages. Submitted version. Typos corrected and adjustments made. Comments and references adde
    corecore