223 research outputs found

    Do Female Dogs Age Differently Than Male Dogs?

    Get PDF
    Humans, as well as their closest ancestors, the higher African primates, exhibit female-biased survival and multiple sex differences in causes of death. However, the effects of sex on aging and longevity in an excellent model of human health, the companion dog, have not been well explored. Using two large independent databases on companion dog longevity and causes of death, we performed the most extensive analysis of sex differences in dog aging to date. Unlike the findings in humans, we observed only a small effect of sex on canine longevity. When broken down by neutering status, we discovered a small male advantage in survival among intact dogs but a clear female survival advantage among neutered dogs. Overall, the effect of neutering on life span was greater than the effect of sex. However, we found few sex differences in causes of death in either intact or neutered dogs. The results of this study suggest limited sex effects on either longevity or causes of death in the companion dog. Our analysis suggests that the majority of apparent sex differences in the wider canine populations may be due to the effects of neutering

    Amino acid restriction, aging, and longevity: an update

    Get PDF
    Various so-called dietary restriction paradigms have shown promise for extending health and life. All such paradigms rely on ad libitum (hereafter ad lib) feeding, something virtually never employed in animals whose long-term health we value, either as a control or, except for food restriction itself, for both control and treatment arms of the experiment. Even though the mechanism(s) remain only vaguely understood, compared to ad lib-fed animals a host of dietary manipulations, including calorie restriction, low protein, methionine, branched-chain amino acids, and even low isoleucine have demonstrable health benefits in laboratory species in a standard laboratory environment. The remaining challenge is to determine whether these health benefits remain in more realistic environments and how they interact with other health enhancing treatments such as exercise or emerging geroprotective drugs. Here we review the current state of the field of amino acid restriction on longevity of animal models and evaluate its translational potential

    Change and Aging Senescence as an adaptation

    Get PDF
    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will between parents and their progeny; iii) optimal conditions are not stationary, mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by random chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces always win over group selection ones, it is not exactly the individual that is selected, but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure

    New species longevity record for the northern quahog (=hard clam), Mercenaria mercenaria

    Get PDF
    Author Posting. © National Shellfisheries Association, 2011. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 30 (2011): 35-38, doi:10.2983/035.030.0106.Twenty-two large shells (>90 mm shell height) from a sample of live collected hard shell clams, Mercenaria mercenaria, from Buzzards Bay, Woods Hole, Cape Cod, MA, were subjected to sclerochronological analysis. Annually resolved growth lines in the hinge region and margin of the shell were identified and counted; the age of the oldest clam shell was determined to be at least 106 y. This age represents a considerable increase in the known maximum life span for M. mercenaria, more than doubling the maximum recorded life span of the species (46 y). More than 85% of the clam shells aged had more than 46 annual increments, the previous known maximum life span for the species. In this article we present growth rate and growth performance indicators (the overall growth performance and phi prime) for this record-breaking population of M. mercenaria. Recently discovered models of aging require accurate age records and growth parameters for bivalve populations if they are to be utilized to their full potential.This work was supported by grants from the American Diabetes Association (to Z. U.), American Federation for Aging Research (to A. C.), the University of Oklahoma College of Medicine Alumni Association (to A. C.), the BBSRC (to C. A. R.),the National Institutes of Health (AT006526 and HL077256 to Z. U.; AG022873 and AG025063 to S. N. A.), and the DFG Cluster of Excellence ‘‘Future Ocean’’ (to E. P.)

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Demography and Life Histories of Sympatric Patas Monkeys, Erythrocebus patas, and Vervets, Cercopithecus aethiops, in Laikipia, Kenya

    Get PDF
    Mortality patterns are thought to be strong selective forces on life history traits, with high adult mortality and low immature mortality favoring early and rapid reproduction. Patas monkeys (Erythrocebus patas) have the highest potential rates of population increase for their body size of any haplorhine primate because they reproduce both earlier and more often. We report here 10 yr of comparative demographic data on a population of patas monkeys and a sympatric population of vervet monkeys (Cercopithecus aethiops), a closely related species differing in aspects of social system, ecology, and life history. The data reveal that 1) adult female patas monkeys have significantly higher mortality than adult female vervets; 2) infant mortality in patas monkeys is relatively low compared to the norm for mammals because it is not significantly different from that of adult female patas monkeys; and 3) infant mortality is significantly higher than adult female mortality in vervets. For both species, much of the mortality could be attributed to predation. An epidemic illness was also a major contributor to the mortality of adult female patas monkeys whereas chronic exposure to pathogens in a cold and damp microenvironment may have contributed to the mortality of infant vervets. Both populations experienced large fluctuations during the study period. Our results support the prediction from demographic models of life history evolution that high adult mortality relative to immature mortality selects for early maturation

    Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    Get PDF
    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually

    Sexual Dimorphism in Healthy Aging and Mild Cognitive Impairment: A DTI Study

    Get PDF
    Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women
    corecore